Соединения четырехполюсников — КиберПедия 

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Соединения четырехполюсников

2021-04-19 107
Соединения четырехполюсников 0.00 из 5.00 0 оценок
Заказать работу

 

В ряде случаев сложный 2х2-полюсник можно представить в виде соединения более простых структур.

Рассмотрим основные виды соединении 2х2-полюсников (рис. 2.6).

При последовательном этажном соединении имеет место за­висимость

 

 ,                                       (2.17)

 

т. е. матрица [z] последовательного соединения 2х2-полюсников равна сумме матриц [z] составляющих 2Х2-полюсников. При параллельном соединении 2Х2-полюсников имеем

 

 ,                                       (2.18)

 

Схемы соединений четырехполюсников

 

а — последовательное; б — параллельное;

в — последовательно-параллельное; г — парал­лельно-последовательное;

д — каскадное

Рис. 2.6.:

 

т. е. матрица [у] параллельного соединения 2х2-полюсников рав­на сумме матриц [у] составляющих 2х2-полюсников. При после­довательно-параллельном и параллельно-последовательном соеди­нении имеем

 

 ,                                         (2.19)

 ,                                        (2.20)

 

т. е в этих соединениях суммируются соответственно матрицы [h] и [g].

Каскадное соединение 2Х2-полюсников

 

 ,                                       (2.21)

 

равно произведению матриц [а] составляющих 2х2-полюсников; при этом матрицы должны записываться в порядке следования 2х2-полюсников в цепочке.

При выводе (2.17) … (2.21) предполагаем, что токи, входящие во все четырехполюсники, участвующие в соединениях, удовлет­воряют условию попарного равенства и противонаправленности; такое соединение четырехполюсников называют регулярным.

В действительности же указанное условие не всегда выпол­няется; тогда соединение 2х2-полюсников становится соединением 4Х 1-полюсников, которые подчиня­ются иным закономерностям. Поэтому, прежде чем применять теорию 2х2-по-люсников к тому или иному их соеди­нению, необходимо убедиться, что это соединение является регулярным, т. е. токи в верхнем и нижнем полюсах каждого составляющего четырехполюсника равны и противонаправленны.

 

К доказательству леммы о токах четырехполюсника

 

Рис. 2.7

 

При этом достаточно, чтобы это выполня­лось лишь для одного конца каждого из составляющих четырехпо­люсников, так как справедлива следующая лемма: если токи в верх­нем и нижнем полюсах на одном конце четырехполюсника равны и противонаправленны (рис. 2.7), то будут равны и противонаправлен­ны также токи на другом конце четырехполюсника, т. е. равенст­ва I1=I01, I2=I02 вытекают одно из другого. Доказательство этой леммы следует из обобщенного закона Кирхгофа: сумма токов, пронизывающих произвольную замкнутую кривую или поверх­ность, охватывающую часть электрической цепи, равна нулю; при этом входящие токи следует брать с одним знаком, а выходя­щие — с противоположным. На практике часто можно не прове­рять попарное равенство токов, если известно, что соответствую­щие соединения регулярны. К ним относятся следующие соедине­ния:

1) Соединения двух трехполюсных четырехполюсников (рис. 2.8, а, б, в) (четырехполюсник называют трехполюсным, если его нижние зажимы соединены накоротко, как показано на рис. 2.5). Все другие соединения двух трехполюсных четырехполюсников, хотя формально и нерегулярные, также могут быть приведены к виду регулярных.

 


Регулярные соединения четырехполюсников

 

 

Рис. 2.7

 

Трехполюсный че­тырехполюсник

 

 

Рис. 2.8

 

2) Параллельное соединение n трехпо­люсных либо уравновешенных (симмет­ричных относительно продольной оси) четырехполюсников (рис. 2.4,г).

3) Любое соединение разрывного че­тырехполюсника с любым другим (четы­рехполюсник называют разрывным, если между его входом и выходом нет ни элек­трической, ни гальванической связи; примером может служить двухобмоточный трансформатор без емкостной связи между об­мотками).

4) Каскадное соединение любых четырехполюсников, если вся система в целом представляет собой 2х2-полюсник.

Необходимо указать, что при скрещивании (перемене местами) зажимов на входе либо на выходе 2х2-полюсника меняются зна­ки всех параметров, имеющих смысл передаточной функции, а именно параметров z12, z21, y12, y21, h12, h21, g12, g21, a11, a12, a21, a22 .

 

Однородная длинная линия

 

Линия передачи, в которой распространяется Т-волна, описы­вается дифференциальными уравнениями

 

dU / dx = -Zп * I; dI / dx = -Yп * U,                                  (2.22)

 

где U, I            — комплексные действующие значения напряжения и тока в сечении линии, расположенном на расстоянии х от ее начала, В, А;

           — погонные комплексные сопротивле­ния и проводимости, Ом, Сим;

   LП, CП, RП, GП — погонные индуктивность, ем­кость, сопротивление и проводимость линии, Гн, Ф, Ом, Сим.

 

Решение уравнений (2.22) имеет вид

 

 ,       (2.23)

 

где А и В — произвольные постоянные;

   — волновое сопротивле­ние, Ом;

   у  — постоянная передачи,

 

причем

 

 .                                                (2.24)

 

С учетом граничных условий из (2.23) имеем

 

 ,              (2.25)

 

где U1, I1, U2, I2 — напряжения и токи в начале и конце линии, В, А;

l               — длина линии, м.

 

Таким образом, в режиме 2х2-полюсника матрица передачи от­резка линии

 

 .                                        (2.26)

 

Для линии без диссипативных потерь (RП=0, GП=0)

 

;  ,

 

где  —электрическая длина линии, м;

 — длина волны в линии, м,

 

откуда

 

 .                                             (2.27)

 

Линии передачи без потерь, в которых распространяется только Т-волна, обладают специфическим свойством - скорость распростра­нения волны в линии постоянна, а определяется она выражением

 

 ,

 

где с — скорость света в вакууме, м/с;

 — относительная диэлектрическая постоянная мате­риала, которым заполнена линия.

 

Таким образом,

 

 ,

 

т. е. погонные параметры рассматриваемых линий между собой жестко связаны. Например, при сближении проводов линии погонная емкость СП увеличивается, а погонная индуктивность LП уменьшается так, что произведение LПП остается неизменным:

 

 ,

 

где L0 собственная индуктивность одного провода на единицу длины (под собственной индуктивностью провода понимают его индуктивность в случае, когда обратный провод и другие внешние объекты отодвинуты на достаточно большое расстояние), Гн;

М — взаимная индуктивность между обоими проводами на единицу их длины, Гн/м;

k=M/L0 коэффициент магнитной связи между проводами линии ().

 

Согласованность изменения СП и k, которая обеспечи­вается постоянством скорости света, обусловливает сохранение Т-волны при вариациях расстояния между проводами (если это расстояние не превосходит определенных пределов, связанных с диапазоном частот).

 


Поделиться с друзьями:

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.025 с.