В которой мы узнаем, является Мультивселенная полноправной физической теорией или обычной спекуляцией — КиберПедия 

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

В которой мы узнаем, является Мультивселенная полноправной физической теорией или обычной спекуляцией

2021-01-31 99
В которой мы узнаем, является Мультивселенная полноправной физической теорией или обычной спекуляцией 0.00 из 5.00 0 оценок
Заказать работу

 

Когда дело доходит до глобальных идей, физики должны быть беспощадны. За время существования человечества возникало множество разнообразных идей, у которых находились свои последователи. Потом такие идеи (например, существование электромагнитного эфира, флогистона, теплорода или планеты Вулкан) исчезали, вытесненные из сознания людей убедительными доказательствами. Всему виной избыток человеческого воображения и постоянное стремление к новым теориям. В конце концов, если не вы поддержите собственную идею, то кто? Мы хотим знаний, мы стремимся к ним, и мы делаем все, что в наших силах, для создания рациональных объяснений необычных явлений. Мы придумываем разнообразные убедительные доказательства того, почему верна именно наша теория. Разумеется, мы учимся на своих ошибках, но любое неправильное объяснение приближает нас к единственно верному. Если вы не любите ошибаться, не занимайтесь наукой. Остров знаний разрастается хаотично и непредсказуемо. Иногда на месте ровного берега образуются заливы. Воображение – ключевой элемент всех открытий и изобретений, но само по себе оно не работает. Фундаментом для построения любой научной теории является ее экспериментальная доказуемость. Двадцать физиков‑теоретиков, запертых в одной комнате, могут придумать вселенную, полностью отличную от той, в которой живем мы.

Теория о множественности вселенных представляет серьезную угрозу для этого modus operandi. Если за пределами нашего космического горизонта существуют иные вселенные, мы никогда не сможем получить от них какой‑то знак или отправить им свои сигналы. Даже если они реальны, они находятся в пространстве, совершенно недоступном для нас и наших инструментов. Мы никогда не увидим и не посетим их, а наблюдатели из них не смогут увидеть или посетить нас. Поэтому, строго говоря, существование Мультивселенной никогда не сможет быть подтверждено наверняка. Космолог Джордж Эллис из Университета Кейптауна, ЮАР, активно отстаивает эту позицию: «Все параллельные вселенные лежат за пределами нашего горизонта и вне нашего доступа – ни сейчас, ни в будущем, как бы ни развились наши технологии. Они находятся слишком далеко, чтобы хоть как‑то влиять на нашу Вселенную. Вот почему ни одно из заявлений, приводимых теоретиками Мультивселенной, не может быть подтверждено напрямую».[78]

Современные физики лишь немного готовы встать под древнее знамя позитивизма, поднятое выше всех австрийским философом Эрнстом Махом, который в 1900 году заявил, что атомов не существует, потому что их нельзя увидеть (и, к сожалению, придерживался этого подхода до самой своей смерти в 1916 году). Существует множество способов определить, реально что‑то или нет, даже если мы не можем увидеть это или потрогать. К примеру, астрофизики делают вывод о существовании массивной черной дыры в центре Млечного Пути на основании движения расположенных рядом с ней звезд, а затем экстраполируют этот вывод на другие галактики. Специалисты по физике частиц действуют сходным образом, рассчитывая свойства частицы на основании следа, который она оставляет на детекторе. Невозможно увидеть электрон, но можно рассмотреть его след в различных устройствах. Мы делаем вывод о существовании частиц по их влиянию на различные приборы. Возможно, «существование» – это слишком сильное слово. Мы создаем идею электрона, чтобы обозначить ею точки и линии, которые мы видим на экранах приборов, используемых для измерения элементарных частиц. Точно так же мы вводим идею темной энергии как экономное объяснение смещенных в сторону красного цвета спектральных сигнатур удаленных объектов.

Итак, вопрос заключается не в том, можем ли мы увидеть соседнюю вселенную напрямую, а в том, существуют ли способы засечь ее присутствие, находясь в пределах нашего космического горизонта. Таким образом мы не докажем существование Мультивселенной, но подтвердим возможность наличия соседних вселенных. Такой эксперимент обеспечил бы значительную поддержку всей теории множественности вселенных, поэтому данная область исследований является очень привлекательной. Очень важно понимать разницу между обнаружением характерных признаков соседних вселенных и доказательств существования полноценной Мультивселенной. На данном этапе часто возникает путаница, поэтому я повторю еще раз: даже если мы, будучи ограниченными нашим космическим горизонтом, сумеем получить убедительные экспериментальные доказательства существования соседних вселенных, это не обязательно будет означать, что Мультивселенная существует. Для некоторых физиков обнаружение существования другой вселенной является достаточным основанием для экстраполяции, такой концептуальный прыжок не подтверждается никакими данными. Пара расположенных по соседству домов не считается страной. Существование Мультивселенной, бесконечна она или нет, остается неизвестным.[79]

Как вы помните из нашего обсуждения космологии Большого взрыва, на данный момент нашим лучшим инструментом для изучения свойств Вселенной является фоновое космическое излучение. Могли ли другие вселенные каким‑то образом оставить свой отпечаток на фотонах, движущихся через весь космос в течение последних 13,8 миллиарда лет?

Если бы я писал статью на эту тему, я бы назвал ее «Когда сталкиваются вселенные».[80] Могла ли соседняя вселенная в прошлом столкнуться с нашей? Очевидно, даже если это произошло, столкновение не было очень сильным, иначе ни нас, ни наших рассуждений об этом уже бы не существовало. Но соседние вселенные действительно могут сталкиваться по мере роста и расширения – или, скорее, касаться друг друга, потому что слово «столкновение» звучит слишком жестко. В 2007 году Алан Гут совместно с Алексом Виленкиным и Хауме Гаррига из Барселонского университета предположили, что подобное соприкосновение действительно имело место. Если представить себе два столкнувшихся мыльных пузыря, можно понять, что такое соприкосновение вызовет вибрацию поверхностей вселенных. Затем такая вибрация передастся внутрь пузыря и заставит дрожать все, что находится в нем. Столкновение вызвало бы колебания в космической геометрии обоих вселенских пузырей. Такие колебания шли бы по пространству, как волны по воде, заставляя людей и неживые объекты подниматься и опускаться. Интересно, что такие волны могут быть дискообразными – похожими на круги на поверхности воды. Соответственно, микроволновая карта неба должна отображать кольцевые узоры в том месте, где произошло столкновение.

Некоторые космологи, включая Энтони Агирре из Калифорнийского университета в Санта‑Крузе, Мэтью Клебана из Университета Нью‑Йорка и их сотрудников, разработали теоретические сценарии того, какие следы подобных событий в прошлом могли бы дойти до наших дней. К примеру, в фотонах базового излучения могли бы наблюдаться кольцевые колебания температур разных размеров и разной интенсивности в зависимости от характера столкновения. Кроме того, фотоны также могли бы иметь поляризационный рисунок, то есть располагаться на небе в определенной последовательности, как костяшки домино, поставленные вертикально.[81] Первые исследования, проведенные с использованием данных спутника WMAP, не дали положительных результатов, но это не означает, что вопрос можно признавать окончательно решенным. Команда орбитальной станции «Планк» готовит к публикации данные, которые могут содержать сигнатуры, ожидаемые Клебаном и его командой: дискообразные круглые узоры в фоновом излучении с двумя пиками поляризации фотонов, направленными в определенную точку у края диска. Такая сигнатура будет уникальной и станет достаточным подтверждением того, что столкновение вселенных действительно имело место в далеком прошлом, ведь привести другие объяснения ее существованию вряд ли удастся.

Обратите внимание, что даже в этом случае мы не сможем узнать почти ничего о физике, действующей в соседней вселенной, то есть о существующей в ней материи и силах и о том, сходны ли ее законы с нашими (хотя расчеты параметров столкновения строятся на том, что это так по крайней мере в общем смысле). Мы всего лишь увидим призрак альтернативной реальности за пределами нашей Вселенной, манящей, но недоступной, реальной, но непознаваемой. Даже если сценарий струнного ландшафта получит косвенное подтверждение из области физики частиц и, соответственно, еще больше подкрепит гипотезу Мультивселенной, мы никогда не узнаем, сколько вселенных соприкасались с нашей в прошлом, возможно ли подобное событие в будущем и приведет ли оно к нашей гибели (скорее всего, да). Мы будем подобны героям из легенд, которые, пройдя многочисленные испытания, находят темный артефакт, обладающий невероятной разрушительной силой. Открытие соседней вселенной вызовет у нас одновременно триумфальное ликование и первобытный страх. Чтобы развить эту метафору, можно вспомнить, что мы ищем в небе кольцеобразные узоры. На ум сразу же приходят «Кольцо нибелунгов» Рихарда Вагнера и «Кольцо всевластия», принадлежавшее Владыке Саурону в книгах Дж. Р. Р. Толкина.

Несмотря на то что шансы обнаружить подобный узор в фоновом излучении крайне малы, Агирре, Клебан и их коллеги указывают на один важный момент. Существование других вселенных, которое до этого казалось предметом изучения скорее эзотерики, чем физики, сегодня находится в области экспериментально доказуемого. Как это часто случается с экзотическими темами исследований, даже пусть шансы на успех невелики, результат в случае удачи будет настолько важным, что окупит все затраченные усилия. Однако я хотел бы еще раз подчеркнуть, что обнаружение соседней вселенной нельзя будет считать доказательством существования Мультивселенной. В рамках современных физических формулировок гипотеза множественности вселенных, несмотря на всю свою убедительность, не может быть доказана экспериментально. Нельзя автоматически экстраполировать данные о двух (или нескольких) вселенных на их бесконечное количество.

Кроме того, само понятие «бесконечное количество» тоже, в принципе, не доказуемо. Для того чтобы быть уверенными в бесконечности космоса, мы должны получить сигнал с бесконечно далекого расстояния (то же самое верно для бесконечности времени и далекого прошлого). Чтобы знать о вечном расширении Вселенной, мы должны вечно отслеживать это расширение, причем мы не можем знать наверняка, не поступят ли к нам в будущем новые данные, указывающие на то, что расширение остановилось или обратилось вспять. Несмотря на то что понятие бесконечности имеет для нас огромную математическую привлекательность и кажется совершенно естественным, мы никогда не узнаем наверняка, существует ли оно в Природе. В физическом мире бесконечное означает неизвестное. Все, что мы можем, – это рассуждать о его существовании, сидя на берегу своего Острова знаний.

Инфляционная гипотеза и возможное существование Мультивселенной доводят понятие испытуемости в физике до крайности. Мы уже знаем, почему так происходит с понятием Мультивселенной, которое, в строгом смысле, нельзя подтвердить экспериментально. В случае с инфляцией все немного тоньше. Инфляционная космология в своей наиболее независимой от моделей форме делает некоторые предположения, действительность которых была подтверждена. Основные из них – плоскость Вселенной и температурная гомогенность и изотропность фонового излучения. Но нам следует помнить, что на самом деле это вовсе не предположения, проистекающие из инфляционной гипотезы. Наоборот, инфляционная гипотеза была специально создана для того, чтобы найти ответы на вопросы о плоскости Вселенной и космическом горизонте, возникающие в стандартной космологии Большого взрыва. Нет ничего удивительного в том, что она выполняет свою задачу.

Если говорить о по‑настоящему новых предположениях, выдвинутых в рамках инфляционной гипотезы, то в первую очередь следует упомянуть предсказанные ею колебания гомогенного фона фотонов в микроволновом излучении. Согласно инфляционной космологии, эти колебания, похожие на крошечные волны на поверхности озера, вызываются квантовыми колебаниями скалярного поля, которое и является причиной инфляции. В процессе инфляции эти небольшие участки растягиваются на огромные расстояния, в конце концов выходящие за пределы космического горизонта. По мере расширения Вселенной некоторые из этих флуктуационных волн возвращаются в область, ограниченную космическим горизонтом, но уже в астрономическом размере. А если где‑то есть избыток энергии, гравитация привлечет в это место материю (в основном атомы водорода). Точно так же и фотоны из фонового излучения будут стремиться к этим более насыщенным областям космоса, приобретая при этом энергию (то есть повышая свою температуру). Это движение будет приводить к крошечным температурным колебаниям в фоновом излучении. Через миллионы лет материя, собравшаяся в участках с избыточной энергией, превратится в первые звезды, а затем и галактики. Итак, величайший триумф инфляционной космологии состоит в том, что она описывает механизм появления галактик и объясняет их распределение в пространстве в форме иерархии скоплений, похожей на пену в ванне.[82]

Температурные колебания фотонов фонового излучения, измеренные с помощью современных спутниковых технологий и наземных детекторов, указывают на первобытные колебания материи. Исследовать их – означает открыть окно в первые секунды существования времени. Инфляционная гипотеза удивительным образом соединяет квантовый мир с миром астрономическим. Чем точнее становятся измерения, тем проще исключать неверные модели инфляции. Дополнительным признаком инфляции является спектр флуктуаций в геометрии пространства‑времени: если концентрация материи колеблется определенным образом, то на это реагирует и пространство вокруг нее. Инфляция увеличивает масштаб таких пространственных колебаний и создает спектр так называемых гравитационных волн. Они также оставляют свой след в фоновом излучении. По своей природе (но не по сути) этот след похож на поляризационные флуктуации, возникающие в результате гипотетических столкновений с соседними вселенными. Остается надеяться, что орбитальная станция «Планк» сумеет измерить этот спектр поляризации. Если это будет сделано и если будет обнаружена ожидаемая сигнатура, мы сможем быть уверены, что процесс, похожий на инфляцию, действительно имел место на заре существования космоса.[83]

Тем не менее подтвердить существование явления в общем – это одно, а вот проверить экспериментально его точную формулировку – совсем другое. Инфляционная гипотеза все еще оставляет многие вопросы без ответов. Данные помогают сузить круг возможных вариантов, но текущих наблюдений (равно как и тех, которые мы получим в ближайшем будущем) недостаточно для того, чтобы точно определить причину инфляции. Было ли это скалярное поле? Если да, то что за невероятно высокие энергии вызвали его появление? Инфляция также не объясняет важного перехода от стремительного расширения к более медленному, происходящему с нашей Вселенной на протяжении последних пяти миллиардов лет. Вероятно, именно во время этого перехода, ознаменовавшего собой конец периода инфляции, Вселенная разогрелась до высоких температур, а энергия, накопленная в скалярном поле, которое стремилось к своему энергетическому минимуму, в результате своеобразного взрыва была преобразована в другие типы материи, возможно в известные нам электроны и кварки. Многие космологи сегодня называют это взрывное образование частиц истинным Большим взрывом. Несмотря на множество попыток объяснить этот процесс (некоторые предпринимал и я), у нас есть лишь общее представление о том, как проходил данный переход и какие частицы образовались в результате. Главная проблема состоит в том, что мы совершенно ничего не знаем о тех типах материи, которые существовали во времена зарождения Вселенной и соответствовали энергиям, в триллионы раз превышающим те, которых мы можем достичь в лаборатории. Астрономические наблюдения позволяют исключить некоторые космологические теории или ограничить применимость других, но не дают нам точной картины произошедшего. Мы знаем лишь то, что неверно. Эта ситуация наверняка понравилась бы философу Карлу Попперу, который говорил, что подтвердить правоту физической теории в конечном итоге невозможно – мы можем лишь доказать, что она была неправильной.

Все, что мы можем сделать с инфляцией, – это создать рабочую модель, соответствующую всем измеримым параметрам. Но такая модель может оказаться похожа на эпициклы Птолемея – фантастическое нагромождение идей, которое «работает». Возможно, многие даже поверят в ее истинность, но суть ее будет заключаться в резюмировании всего, что мы сегодня знаем о ранней космической истории.

Наша следующая задача состоит в ответе на величайший из физических вопросов – вопрос о происхождении Вселенной. Ни гипотеза об инфляции, ни концепция Мультивселенной не приближают нас к пониманию начала всего. Для того чтобы ответить на этот вопрос, необходимо исследовать свойства материи и квантовые законы, которые их определяют. Если Вселенная расширяется с самого начала своего существования, значит, в какой‑то момент времени в прошлом она была очень мала – настолько мала, что ее поведением управляли законы квантовой физики. Однако, как мы увидим дальше, эти законы заставляют нас отказаться от некоторых любимых нами представлений о том, что мы называем реальностью, и заменить их гораздо более тонкими и загадочными описаниями квантовой Вселенной и нашего взаимодействия с ней.

В квантовой физике мы сталкиваемся с двумя фундаментальными лимитами знания, о которых нам уже известно, – теми, которые налагает на нас ограниченная точность наших приборов, и теми, которые являются естественными результатами природных процессов. Эти лимиты – непреодолимые барьеры, стоящие между нами и нашими знаниями о природе реальности.

 

 


Поделиться с друзьями:

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.016 с.