Устройство различных типов ядерных реакторов. — КиберПедия 

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Устройство различных типов ядерных реакторов.

2021-01-29 78
Устройство различных типов ядерных реакторов. 0.00 из 5.00 0 оценок
Заказать работу

В настоящее время в мире существует пять типов [17] ядерных реакторов. Это реактор ВВЭР (Водо-Водяной Энергетический реактор), РБМК (Реактор Большой Мощности Канальный), реактор на тяжелой воде, реактор с шаровой засыпкой и газовым контуром, реактор на быстрых нейтронах. У каждого типа реактора есть особенности конструкции, отличающие его от других, хотя, безусловно, отдельные элементы конструкции могут заимствоваться из других типов. ВВЭР строились в основном на территории бывшего СССР и в Восточной Европе, реакторов типа РБМК много в России, странах Западной Европы и Юго-Восточной Азии, реакторы на тяжелой воде в основном строились в Америке. Параметры этих реакторов лучше всего представить в виде таблицы:

Табл. 2. Сводные характеристики ядерных реакторов

Параметры сравнения ВВЭР РБМК Реактор на тяжелой воде
Тепловыделитель 4.5%-й обогащенный уран 2.8%-й обогащенный уран 2-3%-й обогащенный уран
Замедлитель и его свойства Легкая вода. Очень хорошо замедляет нейтроны, очень сильно поглощает нейтроны. Очень дешева. Графит. Хорошо замедляет нейтроны, почти не поглощает нейтроны. Достаточно дешев. Тяжелая вода. Очень хорошо замедляет нейтроны, почти не поглощает нейтроны. Очень дорога в производстве.
Особенности активной зоны, определяемые параметрами замедлителя Тесное расположение тепловыделяющих элементов, необходимость повышенного обогащения урана Достаточно редкое расположение тепловыделяющих элементов, возможность использования низкообогащенного урана или отработанного топлива ВВЭР Достаточно редкое расположение тепловыделяющих элементов, возможность использования низкообогащенного урана или отработанного топлива ВВЭР
Количество контуров Два Один Два
Теплоноситель Легкая вода в обоих контурах. Одновременно является замедлителем. Легкая вода. Замедляющий эффект незначителен. Тяжелая вода в первом контуре, легкая вода во втором. Тяжелая вода одновременно является замедлителем.
Регулирование Раствор борной кислоты в теплоносителе. Регулирующие стержни из бороциркониевого сплава и оксида европия. Регулирующие стержни из бороциркониевого сплава и оксида европия. Регулирующие стержни из бороциркониевого сплава и оксида европия.
Перегрузки топлива 1 раз в 4-6 месяцев, с полной остановкой реактора и вскрытием его корпуса. Каждый тепловыделяющий элемент переставляется внутри реактора трижды до его окончательного извлечения. В процессе работы, с помощью специальной перегрузочной машины, позволяющей перезагружать отдельные тепловыделяющие элементы. Каждый тепловыделяющий элемент переставляется внутри реактора несколько раз до его окончательного извлечения. Раз в несколько месяцев, с полной остановкой реактора.
Наружный отражатель Наружный металлический корпус. Графитовая кладка толщиной 65 см. Наружный корпус не обязателен, но желателен по соображениям безопасности Наружный металлический корпус.

Упрощенная принципиальная тепловая схема AЭС с реактором типа РБМК-1000 [17]. Источником тепловой энергии, как и на всех АЭС, является активная зона реактора. В качестве теплоносителя используется вода, которая проходя через активную зону реактора частично испаряется. На выходе из реактора вода содержит в среднем 15% пара (паросодержание p = 0.15). Давление воды в трактах теплоносителя 0.7 МПа (около 70 атм.) при таком давлении температура кипения воды 284 ° С. Пароводяная смесь из реактора направляется в барабан сепаратор, который в тепловом контуре выполняет роль потребителя тепловой энергии. В барабане сепараторе из пароводяной смеси забирается пар и добавляется питательная вода, на выходе из барабана сепаратора мы получаем воду в качестве "холодного" теплоносителя, причем температура практически остается такой же.

В качестве способа теплообмена используется вынужденная конвекция, другими словами используется насос для прокачки теплоносителя через активную зону реактора. На основании выше сказанного можно изобразить тепловую схему, для контура многократной принудительной циркуляции (КМПЦ) реактора РБМК-1000.

Рассмотрим второй тепловой контур. Барабан сепаратор, забирая тепловую энергию вместе с паром из первого контура, где он является потребителем, отдает ее во второй контур. Следовательно он является источником тепловой энергии для второго теплового контура.

"Горячим" теплоносителем является пар, отделенный от пароводяной смеси в барабане сепараторе. Температура пара около 284 ° С давление Р = 7 МПа.
После барабана сепаратора, пар поступает в турбину, где он вращает ротор (происходит преобразование тепловой энергии в механическую), турбина является потребителем тепловой энергии. С ротором турбины жестко связан ротор электрического генератора, вырабатывающий электроэнергию. Параметры пара на выходе из турбины: температура - 30 ° С, давление P - 0.004 МПа. После турбины пар необходимо перевести в жидкое состояние, то есть превратить воду, этот процесс происходит в конденсаторе. Пар в конденсаторе предает свою тепловую энергию воде, которая поступает из пруда охладителя, конденсатор, таким образом, также является потребителем энергии. На выходе из конденсатора мы получаем воду, с параметрами близким к параметрам пара, которая является "холодным" теплоносителем для второго теплового контура. Эта вода, пройдя через несколько вспомогательных устройств, становится питательной водой и с помощью питательного насоса подается в барабан сепаратор.

Следует понимать, что выше описанная схема является, только приближением к реальной тепловой схеме. В ней отражены только ключевые элементы необходимые для понятия базовых принципов работы энергоустановки. Такие важные элементы как деаэратор, конденсатный насос, промежуточные подогреватели, не показаны в данной схеме.

Основные характеристики реактора РБМК-1000 показаны в табл. 3:

 

Табл. 3. Технические характеристики реактора типа РБМК.

 

Мощность

Электрическая 1000
Тепловая 3200

Размеры активной зоны, мм

Эквивалентный диаметр 11 800
Высота 7 000
Шаг топливных каналов, мм 250
Число топливных каналов 1693
Максимальная мощность теплового канала, кВт 3000
Тип ТВЭЛа стержневой
Материал оболочки циркониевый сплав
Паропроизводительность реактора, т/ч 5800

Параметры пара перед турбиной

Давление, МПа 6.38
Температура, град С 280

Температура теплоносителя в каналах реактора

Вход 270
Выход 284
Расход воды через реактор, т/ч 37 500
Среднее массовое паросодержание на выходе, % 14,5

 

Компания Sapphire [18] представила общественности новый экстремальный вариант видеокарты на базе графического процессора ATI Radeon X850 XT PE. Карта оборудована принципиально новой системой охлаждения. Кулер разработан компанией NanoCoolers [19] и являет собой эдакий продукт конверсии. В нем применен тот же принцип, что и в системах первого контура охлаждения ядерных реакторов.

 

 

Рис. 14. Видеокарта с системой охлаждения ядерных реакторов

Принципиальное отличие системы от существующих - использование в качестве хладагента жидкого металла. В ядерной энергетике для этих нужд используют жидкий натрий, а что использовано в системе Liquid Metal Cooling Loops, неизвестно. Однако преимущество использования очевидно - жидкий металл имеет намного (более, чем в 65 раз) большую удельную теплоемкость, температура кипения (т.е. состояния, в котором хладагент больше не может отнимать энергию у охлаждаемого объекта) равна 2000 градусов. Таким образом, теплоемкость больше не является сдерживающим фактором (а именно на этой теме сломаны тонны копий в специализированных форумах на обсуждении, что лучше - вода, тосол, компрессорное масло и т.д.)

 

 

Рис. 15. Схема контура охлаждения

 

Система на удивление проста. Она состоит из теплообменника, радиатора для охлаждения металла, электромагнитной помпы и соединительных трубок, а также всякой периферии типа вентилятора, корпуса и т.д.

Электромагнитная помпа имеет очень простое строение, а главное - она не содержит движущихся частей, и, как следствие, абсолютно бесшумна. Принцип ее работы следующий. Так как жидкий металл - проводник, в действие вступает эффект Лоренца. Общий смысл эффекта таков: приложение постоянного тока к проводнику в магнитном поле вызывает смещение проводника по действием силы с вектором, направление которого определяется по правилу правой руки. Помпа состоит из внешнего магнита, создающего поле в канале с металлом, и двух электродов, расположенных перпендикулярно линиям напряженности поля.


Рис. 17. Принцип работы э/м помпы

 

Подавая напряжение на электроды, помпа заставляет массу металла двигаться в заданном направлении. Так как контур полностью заполнен и замкнут, движение массы осуществляется безостановочно. Изменяя силу тока на электродах, можно изменять интенсивность потока.

Теплообменник (Cold Plate) устанавливается на источник тепла (в данном случае графический процессор). Его задача - максимально быстро и эффективно передать энергию с охлаждаемой поверхности в хладагент (жидкий металл). Теплообменник содержит несколько внутренних каналов, чтобы увеличить площадь теплообмена между ним и жидким металлом. При этом, учитывая выдающиеся термические характеристики жидкого металла и его текучесть, нет нужды в создании микроканалов и других замысловатых конструкций, достаточно нескольких обычных каналов. Благодаря этому резко снижается сопротивление потоку, приводя к снижению требований к мощности помпы (гидросопротивление - один из злейших врагов водяного охлаждения).

Второй теплообменник, позволяющий охладить жидкий металл, может быть нескольких видов, в зависимости от выделяемой мощности. Это может быть обычный радиатор, который будет отдавать тепло воздуху конвекционным путем или с помощью продува вентилятором. Это может быть радиатор с установленным на нем элементом Пельтье (термоэлектрическим охлаждающим элементом). Ну, и наконец, это может быть радиатор, подключенный ко второму контуру охлаждения. В таком случае получится уже каскадная система охлаждения. Кстати, именно такая система применяется на ядерных реакторах.

 

Принцип работы ПЛМ

Лазер используется для предварительной ионизации воздуха. Световой поток с малыми длинами волн будет эффективнее ионизировать среду, поэтому целесообразнее использовать газовый УФ-лазер. Фокусирующий кристалл изготовлен такой формы, что лазерное излучение расщепляется дискретно на множество пучков, каждый из которых собирается в определённом месте (см. рис. 18). При этом образуется «клинок» специальной формы из световых пробоев [5,6]. УФ-излучение не видимо невооружённому глазу и достаточно сильно поглощается плазмой, которая образуется из молекул воздуха в местах фокуса лазерного луча. Это обеспечит его минимальное распространение за пределы лезвия меча. Всё что мы увидим в этом случае – светящийся клинок, образованный лазерными искрами. Световое электромагнитное излучение, необходимое для этого процесса само по себе будет довольно мощным. К тому же оно будет сфокусировано, и в местах фокусов образуется плазма достаточно высокой температуры [6,9]. Это уже придаёт ПЛМ некоторую разрушающую способность. Однако не все пункты ТЗ ещё разрешены.

Плазма клинка будет нестабильна. Известно, что при световом пробое в фокусе лазерного луча она будет не только расширяться, но и двигаться «назад по лучу» [10]. Однако она будет отличным проводником электрического тока. За счёт разлёта плазмы и высокой температуры цилиндра клинка основная часть ионизированных молекул воздуха соберётся внутри цилиндрического искрового клинка, не считая сами места образования плазмы. Это также сыграет полезную роль, повышая проводимость и внутри лезвия.

Но плазму надо ещё как-то и удерживать. Применение магнитных ловушек не представляется возможным по нескольким причинам. Во-первых, это геометрия клинка. Он вытянутой формы и находится далеко за пределами базового прибора. Так как выносить далеко за основные габариты детали не получится, то это потребовало бы сверхмощных магнитных полей. Что в свою очередь сильно усложнило бы работу прибора в целом. Во-вторых, применение магнитных силовых полей для удержания плазмы по общей схеме (а только так возможно применить их в ПЛМ) является тупиковой ветвью в физике плазмы, как признают сегодня уже многие учёные [14]. Необходимо найти альтернативный путь силовой связи ионов клинка с ручкой.

Наиболее подходящим является применение явления кристаллизации плазмы (см. раздел 4.3). Оно заключается в образовании точек «абсолютного фокуса» сильным направленным движением электронов [15]. Вокруг этих точек в районе сферы собираются положительные ионы, группируясь по этой поверхности с высокой удельной плотностью. Если такое образование точек абсолютного фокуса повторяется в многих пространственных областях, не чрезмерно далеких друг от друга, то свойства такой плазмы схожи с твёрдым телом [15]. Общий объёмный заряд равен нулю, следовательно равно нулю и внешнее электростатическое излучение. Плазма так же сопротивляется сжатию и растяжению, как и твёрдое тело. Останется только привязать твёрдоплазменный клинок к ручке меча.

Направленное движение электронов организуем с помощью электронной пушки. Сразу стоит отметить, что её мощность должна быть большой, но не нереально критичной. Ведь затравочная плазма в объёме клинка уже образована. Останется только обеспечить в этой области большой ток и, для образования точек электронных фокусов, задать движение электронов в нужном направлении. Первоначальное движение электронов по конусу к оси (рис. 20) получим, использовав электронную пушку специальной конфигурации. К тому же при движении пучка электронов вокруг него создаётся магнитное поле, которое в свою очередь сжимает токи в пучке к его оси. Это легко показать, рассмотрев движение электронов как микротоки, вокруг которых создаётся замкнутое магнитное поле (рис. 19). А потом рассмотрев действие каждого конкретного поля на отдельный электрон. Проинтегрировав силы Лоренца, получим, что результирующий вектор силы направлен к центру электронного пучка. Если токи будут достаточно велики, то наступит момент когда сила притяжения под действием собственного магнитного поля станет равной и больше силы электростатического отталкивания.

Рассмотрим движение электронного пучка в продольном сечении клинка. Точки абсолютного фокуса при схождении пучка способны образоваться не только на точной геометрической оси клинка, но и в других местах пространства. Это обуславливается неоднородностями среды, по которой протекает электронный ток, разбиваясь из-за этого на ещё более мелкие микротоки [9,15]. Поэтому при достаточной силе тока формирование фокусов будет происходить вплоть до необходимого расстояния от рукоятки меча. Которое представляется возможным определить только экспериментально ввиду многочисленности нюансов среды, по которой распространяется электронный пучок. Ведь она не является вакуумом. С другой стороны, электроны при распространении в воздухе быстро теряли бы свою скорость, ионизируя молекулы воздуха. Это ограничило бы ток пучка (не учитывается стекание электронов на точку положительного потенциала). Но существование плазменной ионизированной области улучшает положение. Самое маленькое сопротивление она имеет в районе лазерных искр (синяя область на рис. 20.). Чуть большее сопротивление во внутренней области клинка. Постоянство значений этих параметров среды поддерживается постоянной ионизацией лазером. Позже учтём и ионизацию электронным током, но эти два процесса в любом случае через некоторый промежуток времени выйдут на равновесный, стационарный уровень, и степень ионизации будет постоянной. Таким образом в районе абсолютных фокусов и лазерных искр столкновениями можно пренебречь с достаточной степенью уверенности [15]. Имеем следующие факты, характеризующие распространение электронного пучка: 1) он строго направлен и стремится за счёт явления кристаллизации плазмы втянуться к оси; 2) электроны, скорость которых опустилась ниже критической, будут разлетаться к периферии; 3) при попадании в нейтральную среду электрон затормозится, ионизируя её молекулы; 4) меньшим сопротивлением, а, следовательно, лучшим путём свободного протекания тока, обладает область лазерных искр. Теперь если на торце клинка со стороны ручки разместить положительно заряженный электрод, то он станет по «лазерно-искровому проводнику» стягивать к себе электроны, скорость которых недостаточна для образования точек абсолютных фокусов. За пределы геометрии клинка они не будут вылетать далеко – будут испытывать слишком много столкновений и, с конце концов, вместе с выбитыми вторичными электронами стекать на положительный электрод.

При ионизации образуется равное количество положительных ионов. Они являются наиболее тяжёлыми частицами. Как было выше сказано, плазма при световом пробое течёт наиболее интенсивно назад по лучу. К тому же, достаточно эффективно изолировать электростатическое поле электронной пушки не удастся. Это усилит их движение. Но положительно заряжённый электрод на торце меча создаст поле, направленное в противоположенную сторону. Величину заряда (тока пушка-контакт) данного электрода можно рассчитать, учтя, исходящий ток пучка электронной пушки, ионизацию нейтральных молекул среды, рекомбинацию ионов, структуру центров кристаллизации плазмы и некоторые другие особенности распределения элементарных зарядов в клинке. Кроме того, его потенциал необходимо сделать управляемым специальной электрической схемой. Ведь предполагается, что клинок достаточно часто будет приходить в соприкосновение с различными проводящими и непроводящими материалами, с другим клинком. Это существенно повлияет на ток пушка-электрод. Таким образом, положительные ионы будут в основном удерживаться центрами кристаллизации [15]. Причём величину этих центров необходимо выбрать, изменяя параметры электронного пучка. Свободные ионы будут удерживаться обёмным зарядом плазмы и электростатическим полем электрода.

Теперь ясно, что плазменный клинок за счёт взаимодействия токами электронного пучка [14] имеет достаточно сильную связь с самим прибором. Но если учесть неидеальность процессов кристаллизации и внешние явления, имеющие влияние на заряжённые частицы клинка, то хотелось бы дублировать эту систему обратной силовой связи.

2
1
Посмотрим, что получится, если электронный пучок направить не только по конусу, но и под небольшим углом к оси, как изображено на рис. 21. Если рассмотреть циклическую составляющую движения электронов в плоскости, перпендикулярной оси меча (рис. 22), то понятно, что при прохождении одинаковых отрезков dx (соответствуют также одинаковым путям в направлении вдоль оси) угловая скорость будет больше при приближении к оси – угол 2 больше угла 1. Из этого следует, что в местах сужения конусного электронного пучка циклический ток будет максимальным. Направим электроны таким образом, чтобы их движение происходило против часовой стрелки, если рассматривать его со стороны клинка. Значит, упрощённо можно считать, что ток в любом перпендикулярном сечении течёт по часовой стрелке, и в узлах он максимален. Известно, что циклический ток вызовет возникновение магнитного поля. В данном случае оно будет направлено внутри клинка – к ручке меча, за клинком – от неё (рис. 23). Рассмотрим теперь продольный ток электронов. Удельное магнитное поле любого поперечного сечения будет действовать на него так, что до сечения вращение электронов будет замедляться, после сечения – ускоряться. Посему, интегральное магнитное поле не будет изменять направление движения электронов. Но, так как радиус вращения в местах фокусировки луча меньше, то плотность магнитного поля в этой области будет максимальной. Магнитное же поле, в свою очередь, будет препятствовать циклическому току, выпрямляя траектории электронов по оси. В итоге получим две области максимальной плотности магнитного поля – выше и ниже абсолютного фокуса, и мёртвую зону – где суммарное поле равно нулю, а траектории электронов направлены в плоскостях, проходящих через ось клинка. Эти рассуждения подтверждаются явлением самофокусировки [8,15].

Теперь в основании ручки разместим мощную катушку с током так, чтобы её магнитное поле было направлено в сторону клинка. Так как у электронов в лезвии меча есть циклическая составляющая скорости, то действие данного поля окажет сжимающий эффект на их движение. Что уменьшит пороговый ток образования абсолютных фокусов. В свою очередь токи пучка окажутся «вмороженными» [14] в это поле. Это обеспечит обратную силовую связь плазмы лезвия с магнитной катушкой, и данная функция катушки будет основной. А действие поля катушки на токи после фокусов будет минимальным, так как и его силовые линии и токи будут в этом месте расходящимися от оси. Если катушку включить в одну цепь с электронной пушкой (в ней протекают большие токи), то её поле будет мощным, что окажет в целом большой положительный эффект. Также её действие можно усилить, используя магнитный сердечник.

Резюмируем все происходящие процессы. Лазер создаст затравочную плазму и обеспечит основной путь электронов, формируя габариты клинка. Электронная пушка большой мощности создаёт основную плазму кристаллической структуры. Положительный электрод и магнитная катушка призваны поддержать баланс объёмного заряда клинка и обеспечить его силовую связь с ручкой ПЛМ. В результате лезвие получилось по характеристикам напоминающее тлеющий разряд или шаровую молнию [15], а большие токи и большая ионная и электронная температуры обеспечат его достаточную разрушающую способность.

 

 

Расчёты некоторых

Элементов конструкции

Контакт клинков

Без сложных расчётов можно показать, что клинки при непосредственном контакте будут отталкиваться друг от друга. Объемный центр положительного заряда находится на оси меча. Поэтому при совмещении осей двух клинков они будут испытывать сильное отталкивание. Аналогично и с отрицательным зарядом. А так как оба эти центра совмещены, то уже при небольшом удалении от клинка суммарное электростатическое поле будет равно нулю. Но это упрощённая модель. На самом деле плотность положительного заряда возрастает к оси. А если учесть движение и размер частиц, то при контакте внешние электронные слои легко пройдут друг через друга и начнут взаимодействовать с положительными ионами и молекулами плазмы, рекомбинируя и ионизируя. Но эти взаимодействия будут очень слабыми по причине движения электронов и их плохого распространения в нейтральной среде. По началу сила притяжения клинков электронами будет компенсироваться силой отталкивания внешними слоями положительных ионов. Но при дальнейшем увеличении объёма контакта будет сильно возрастать число положительных ионов, что приведёт к преобладанию силы отталкивания. При исчезновении контакта взаимодействие клинков снова станет равным нулю.

Это всё можно подтвердить и расчётами. Но ввиду наличия множества тонкостей, которые необходимо учесть в формулах, а также отсутствия экспериментальных результатов расчёты предполагают быть слишком сложными.

 

Фокусирующий кристалл

Рассчитаем приблизительную форму фокусирующего кристалла. Исходим из того, что искровое лезвие должно иметь размеры, показанные на рис. 25. Длина лезвия выбирается для каждого владельца персонально, но примем её 800 мм для среднего роста человека. Примем также, что распределение светового потока в сечении выходящего из лазера пучка постоянно, то есть прямоугольное. А распределение лазерных искр по поверхности клинка равномерное. Это вызовет дополнительные сложности во внутренней конструкции лазера, но сильно упростит расчёт формы кристалла. При рэлеевском распределении потока в поперечном сечении пучка понадобилось бы использовать в кристалле асферические поверхности, иначе плотность световых пробоев возрастала бы к концу лезвия (что, кстати, в некоторой степени не является критичным).

Разобьем структурно клинок на цилиндрическую часть и завершающую полусферу. Вследствие положения и формы этих частей световые лучи на них целесообразно направлять с разных частей кристалла, отличающихся своей формой. Чтобы получилось равномерное распределение световых пробоев по поверхности клинка, найдём площадь каждой части отдельно:

- площадь цилиндра;

- площадь полусферы.

, где r – радиус клинка;

l – длина клинка.

Соответственно отношение площадей входящего в кристалл пучка будет равно S ц / S псф. Приняв внешний радиус кристалла за x, найдём радиус внутренней зоны у, которая будет направлять лучи на полусферу:

  =>  

Для нахождения максимально простой формы кристалла необходимо, чтобы лучи, идущие на цилиндр лезвия с начала (у) и конца (х) внешней зоны, были параллельны. Составим пропорцию, приняв расстояние от первой поверхности кристалла до начала образования световых пробоев 25 мм:

Решив это уравнение, получим

х = 6.504 мм;

откуда:

у = 0.606 мм.

 

α
α
β
φ
Теперь найдём углы наклона преломляющих граней. Первая грань преломляет лучи так, что каждый из них направлен на место формирования им светового пробоя. А вторая расположена перпендикулярно преломлённому лучу, посему не изменяет угол его наклона. Если первая грань расположена под углом α к перпендикулярному сечению, то и угол падения луча на неё будет равен α. Угол преломления β найдём по закону синусов:

  =>  

Нормаль к первой поверхности будет наклонена к оси под углом α. А преломленный луч – под углом (α-β). Он же будет являться нормалью ко второй поверхности. Поэтому её угол наклона φ будет равен (α-β).

Теперь рассчитаем угол φ исходя из известных геометрических параметров (рис. 26):

=>

 

В качестве материала фокусирующего кристалла возьмём кварцевое стекло КУ1 (ГОСТ 15130—79) — стекло, обладающее высокой прозрачностью в ультрафиолетовой области спектра, без полос поглощения в области 170—250 нм, нелюминесцирующее, показа­тель преломления 1,4584.

 

;     => ;

;

 

.

 

Непреломляющая поверхность фокусирующего кристалла будет иметь сложную форму. Она будет «покрыта» микролинзами, собирающими пучки на заданных расстояниях. Решим вопрос о распределении светового потока по длине лезвия меча. Можно было бы разместить на этой поверхности классические плоско-выпуклые линзы круглой формы, но это не рационально, так как между линзами будут нерабочие промежутки. Если развивать мысль дальше, то при интегрировании таких линз получатся кольца, в сечении которые и будут плоско-выпуклыми. Диаметр этих колец различен, значит, различной будет и площадь охватываемого светового потока. При более точных расчётах это можно было бы учесть. Но мы остановимся на том, что световой поток от лазера имеет не прямоугольное распределение (принятое ранее упрощение), а рэлеевское – к оси интенсивность возрастает. Поэтому, даже если сделать ширину колец одинаковой, то уменьшение площади охватываемой части светового диаметра будет в некоторой степени взаимно компенсироваться увеличением интенсивности этой части.

Длина лазерного клинка 800 мм. Пусть протяжённый световой пробой будет охватывать 50 мм вдоль оси [7]. Тогда нам понадобится минимум 800/50=16 фокусирующих колец, формирующих лазерные искры. Примем число колец равное 20. Тогда ширина кольца:

 

(мм).

Расстояние, на котором необходимо сфокусировать лазерные пучки, будет расти по арифметической прогрессии от 45 мм до 845 мм с шагом 50 мм. Зависимость между фокусом и радиусом кривизны:

 

,

где r2 радиус микролинзы;

                                           n – показатель преломления стекла.

 

Рассчитанные радиусы кривизны микролинз приведены в табл.4:

f’, мм r2, мм
45 20,628
85 38,964
125 57,3
165 75,636
205 93,972
245 112,308
285 130,644
325 148,98
365 167,316
405 185,652
445 203,988
485 222,324
525 240,66
565 258,996
605 277,332
645 295,668
685 314,004
725 332,34
765 350,676
805 369,012
845 387,348
850 389,64
852 390,5568

Центральная зона фокусирующего кристалла будет иметь сферическую поверхность, а на непреломляющей грани диаметром 1,2 мм расположим две микролинзы – одну кольцевую (f ’=850 мм) и одну обычную сферическую (f ’=852 мм). Значения радиусов для них рассчитаны аналогично и приведены также в табл. 4.

 

Табл. 4. Значения радиусов кривизны микролинз.

Описание конструкции и

Составных элементов

Основными частями ПЛМ являются: лазер, создающий плазменный клинок из световых пробоев, электронная пушка, обеспечивающая циркуляцию заряда вдоль клинка, портативный ядерный реактор для питания всего прибора, а также электронный блок управления.

Применяемый лазер будет газовым – только они обеспечивают генерацию излучения в области, близкой к УФ. В учебных целях на чертежах изобразим He-Ne лазер, так как его конструкция самая наглядная.

Электронная пушка также изображена по общей схеме. Однако это не исключает возможное применение пушек других конструкций. Данный элемент имеет внутреннюю систему охлаждения, которая подключается к общему контуру. Параллельно к этому же контуру охлаждения подключен положительно заряжённый электрод, который «собирает» испущенные пушкой электроны.

Ядерный реактор также в учебных целях изображён по общей схеме. На самом деле, в случае применения ядерного топлива, возникает острый вопрос о защите людей в непосредственной близости от ПЛМ от радиоактивного излучения. Система охлаждения электронной пушки и электрода трансформаторным маслом включена в контур, связанный с непосредственной выработкой электроэнергии. В первом контуре реактора используется жидкий натрий, прокачиваемый с помощью электромагнитной помпы.

Электронный блок управления обозначен на чертеже только вероятными внешними габаритами, так как целью курсового не является разработка электронного схемотехнического варианта управления прибором.

 

Заключение

В курсовом проекте разработан принцип работы и общая конструкция нового прибора – портативного лазерного модуля.

Основными частями ПЛМ являются: лазер, портативный ядерный реактор, специальная фокусирующая линза, электронная пушка, электронный блок управления.

Лазер создаст затравочную плазму и обеспечит основной путь электронов, формируя габариты клинка. Электронная пушка большой мощности создаёт основную плазму кристаллической структуры. Положительный электрод и магнитная катушка призваны поддержать баланс объёмного заряда клинка и обеспечить его силовую связь с ручкой ПЛМ.

В результате лезвие получилось по характеристикам напоминающим тлеющий разряд или шаровую молнию, а большие токи и большая ионная и электронная температуры обеспечат его достаточную разрушающую способность.

В учебных целях на чертежах показан простой He-Ne лазер (для прибора понадобится аналогичный газовый, но, вероятно, с другим рабочим газом) и упрощённый портативный ядерный реактор в качестве источника питания.

Цель курсового проекта достигнута – прибор сконструирован, но его работоспособность не проверена экспериментально. В процессе работы над курсовым автор далеко удалился от оптики (того требовала логическая цепочка применимых в функционировании ПЛМ физических явлений), изучил такие разделы науки, как квазиоптика, теория плазмы, физика сверхвысокого электричества, термоядерный синтез, ядерные реакторы и многие другие, не используемые здесь. Заключение, к которому пришёл автор – создание аналогичного прибора возможно, но не в ближайшем будущем из-за малой исследованности применимых физических явлений наукой.

 


Поделиться с друзьями:

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.105 с.