Результаты эксперимента и их обсуждение — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Результаты эксперимента и их обсуждение

2020-12-06 46
Результаты эксперимента и их обсуждение 0.00 из 5.00 0 оценок
Заказать работу

Органические стекла находят широкое применение в различных областях промышленности для остекления автомобильного, железнодорожного, авиационного транспорта, в приборной технике и т.д. Такие материалы прочны, эластичны, травмобезопасны, характеризуются высокой светопрозрачностью. В производстве органических стекол используют полиметакрилаты, полиакрилаты, полистирол, поликарбонаты и другие полимеры. Существенным недостатком является высокая горючесть, что ограничивает область их применения. В связи с этим разрабатываются новые составы органических стекол, относящихся к классу трудносгораемых. Для снижения горючести используются различные модифицирующие добавки, содержащие в составе фосфор, галогены, азот.

Выбор компонентов полимерных заливочных составов, обеспечивающих создание органических стекол с пониженной горючестью обусловлен предъявлением комплекса требований к полимерному составу: способности к сополимеризации; текучести, обеспечивающей заполнение форм; прозрачности на уровне силикатных стекол; способности к карбонизации, обеспечивающей формирование кокса с необходимыми теплозащитными свойствами. Составы для органических стекол должны обладать высоким комплексом физико-механических свойств.

В связи с предъявляемым комплексом требований нами в качестве структурообразующего компонента композиций исследовался ГМА.

Для снижения горючести в составы вводились ЛИМ, ТХЭФ.

Составы, содержащие фотоинициатор, полимеризовали между двумя силикатными стеклами методом УФ-полимеризации при мощности облучения 60 Вт/м2.

Полимеризация ГМА осуществляется по радикальному механизму за счет раскрытия двойных связей, что подтверждается уменьшением интенсивности полосы валентных колебаний связи >C=C<. Разрыв связи >C=C< обеспечивает также участие атома С в межмолекулярной сшивке с образованием трехмерной структуры. Содержание нерастворимой гель-фракции в полимеризате ГМА – 90%. В заполимеризованном ГМА отмечено наличие колебаний связи гидроксильных групп, отсутствующих у незаполимеризованного ГМА, связаных с раскрытием эпоксидного кольца и присоединенного атома водорода, от гидроксила воды, содержащийся в ГМА в количестве 0,5% масс. Это подтверждается отсутствием в заполимеризованном ГМА, колебаний связи эпоксидной группы, имеющейся в незаполимеризованном ГМА при 945 см-1.

ГМА способен к УФ – инициируемой полимеризации. ЛИМ и ТХЭФ в условиях фотоинициируемой полимеризации не полимеризуются.

В связи с тем, что процессам горения предшествуют процессы пиролиза или термолиза при создании материалов пониженной горючести оценено поведение каждого из компонентов при термоокислительной деструкции. При воздействии повышенных температур с применением ТГА.

 
 
Из анализа данных термогравиметрии, табл. 1.4 следует, что все компоненты относятся к коксообразующим. Однако ГМА, полимеризующийся под УФ-воздействием имеет большое значение кажущейся энергии активации процесса деструкции.


Таблица 1.4. Параметры процесса пиролиза компонентов

Вещество

Параметры процесса деструкции

Потери массы при температуре, ºС

Еа, кДж/моль

Тн – Тк, ºС Тmax Выход КО при Тк, % 200 300 400 500
ГМА 210 – 345 280 23 2,5 63 81 83 110
ЛИМ 150 – 370 180, 360 57 20 41 67 90 100
ТХЭФ 242 – 350 310 23 3 43 83 83 -

 

В ТХЭФ, содержащем хлор, деструкция сопровождается дегидрохлорированием, которое завершается в интервале температур 160–240ºС и потери массы соответствуют содержанию хлора в ТХЭФ – 35% масс. Процесс дегидрохлорирования эндотермический, однако, деструкция сопровождается, по данным ДТА, выделением тепла. Видимо, одновременно с дегидрохлорированием протекают процессы структурирования, это подтверждается образованием коксового остатка. В интервале температур 240–320ºС протекает разложение структурированных структур.

Для получения органических стекол с необходимым комплексом свойств осуществлялось последовательное совмещение компонентов. В органическом стекле должны сочетаться жесткость и эластичность, обеспечивающие необходимые прочностные характеристики. В качестве основного компонента использовался глицидилметакрилат. учитывалось, что ГМА при полиме ризации образует жесткую структуру с невысокими физико-механическими свойствами σ р =17МПа.

Для снижения жесткости ГМА использовали введение ТХЭФ – это пластификатор полифункционального действия, который в своем составе содержит хлор и фосфор.

Для оценки взаимодействия компонентов ГЭМА, ТХЭФ и ФК исследовались как незаполимеризованный так и подвергнутый УФ-воздействию составы.

В образце незаполимеризованного состава отмечено наличие пиков валентных колебаний ОН-групп, относящихся к ФК, являющейся катализатором процесса сополимеризации ГЭМА и ТХЭФ. В спектрограмме имеются также пики валентных колебаний связей групп СН3, СН2, СО, ≡Р–О –, ССl, входящих в состав образца.

В спектрограмме полимеризата данного состава существенно увеличился пик валентных колебаний связи ОН-группы и уменьшился пик валентных колебаний связи >С=С<. Появление в спектре заполимеризованного состава колебаний чётных последовательностей n, отсутствующих в незаполимеризованном образце, может свидетельствовать о присоединении молекулы ТХЭФ к ГЭМА по типу «голова к голове».

Анализ спектрограмм позволил предположить, что взаимодействие ГЭМА с ТХЭФ в присутствии ФИ и катализатора, осуществляется в процессе УФ-инициируемой полимеризации по следующей схеме.

Выбор соотношения компонентов и параметров полимеризации проводился по оценке содержания нерастворимой в ацетоне гель-фракции. Для составов, содержащих 49ГМА+49ТХЭФ+1ФК+0,4 ин+ ЛИМа% масс. исследовались зависимости содержания гель-фракции в полимеризате от времени полимеризации. Как видно из графиков, с увеличением времени полимеризации содержание гель-фракции.

При исследовании содержания гель-фракции от времени хранения для состава с 1% содержанием ЛИМа рис. 1.6 кр. 1,2 отмечено снижение количества нерастворимой фракции определенной в полимеризате, через 40 суток после полимеризации. Для образцов, содержащих 2% ЛИМа содержание гель-фракции при хранении возрастает рис. 1.6 кр. 3,4, что может быть связано с недостатком ионного инициатора сополимеризации – ФК.

Сравнительный анализ спектограмм образцов состава 49ГМА+49ТХЭФ+1ФК+1ЛИМ с разным временем полимеризации показал,

Анализ данных термогравиметрии образцов состава 49ГМА+49ТХЭФ+1ФК+1ЛИМ показал, что все образцы относятся к коксообразующим и параметры деструкции мало зависят от времени полимеризации. Однако, следует отметить возрастание термоустойчивости образцов при времени полимеризации 60 мин, что видимо связано с завершенностью процессов структурообразования. Скорости потери массы для всех составов приблизительно одинаковы рис. 1.8.

 

Таблица 1.5. Изменение параметров процесса деструкции от времени полимеризации состава 49 ГМА+49 ТХЭФ +1 ЛИМ+1ФК+0,4 ин

Время полимеризации, мин

Параметры процесса деструкции

Потери массы, при температуре, ºС

, ºС , % Темературный интервал, ºС 100 200 300 400 500 600 700
20 100 1 4 55 73 76 82 90
40 100 1 3 61 72 76 82 89
60 90 1 3 60 74 78 84 93
80 170 1 5 65 72 78 82 89

 

Так как исследуемые составы не обеспечивают жесткости, необходимой для органического стекла, то в них увеличивали содержание ФК, являющейся катализатором сополимеризации.

При введении ФК в количестве 4–5% масс. образцы приобретали твердость, а при содержании ФК выше 5% масс. на поверхности образцов выделяется жидкость, видимо, полиметафосфорная кислота и образцы имеют желтоватый оттенок.

Также возрастает содержание гель-фракции от времени хранения образца, что свидетельствует о протекании процесса структурирования.

При изменении соотношения компонентов 57ГМА+37ТХЭФ+3ЛИМ+3ФК содержание гель-фракции составило 73,2%, образцы прозрачные и эластичные. При дальнейшем увеличении ГМА и понижении ТХЭФ образцы непрозрачны.

Уменьшение содержания ГМА и увеличение ТХЭФ обеспечивает содержание гель фракции 53,7%, состав 28ГМА+66ТХЭФ+3ЛИМ+3ФК не полимеризуется.

 

Таблица 1.6. Исследуемые составы

Состав ЛИМ ФК Образец Содержание гель-фракции, % Содержание гель-фракции, % через 40 дней

50% ГМА

+

50% ТХЭФ

1

1 Эластичный 57 59,1
3 Твердый - -
5 Твердый, желтый - -
9 Твердый, желтый 68 -

 

2

1 Эластичный 48 58,6
4 Твердый    

 

 

3

1 Эластичный 57,2 -
2 Эластичный 60 73,9
3 Эластичный 61 64,5
4 Твердый 62 -
5 Твердый 64,7 -
41ГМА+41ТХЭФ 15 3 твердый 64 -
57ГМА+37ТХЭФ

3

3

Эластичный 73,2 -
66ГМА+28ТХЭФ Твердый, непрозрачн. - -
37ГМА+57ТХЭФ Твердый 53,7 -
66ГМА+28ТХЭФ Не полимеризуется - -

 


Как было уже замечено, что при увеличении количества ФК образцы приобретают твердость, а увеличение ЛИМа придает им эластичность, что и необходимо для органического стекла, в котором должны сочетаться жесткость и эластичность, но также обеспечивать необходимые прочностные характеристики. Поэтому для дальнейших исследований выбран состав 41ГМА+41ТХЭФ+15ЛИМ+3ФК, так как он обладает оптимальными свойствами для органического стекла.

В составе 41ГМА+41ТХЭФ+15ЛИМ+3ФК+0,4 ин варьировали количество инициатора от 0,4 до 3%. С увеличением количества фотоинициатора содержание нерастворимой гель-фракции снижается, образцы обретали желтоватый оттенок и имели большое количество воздушных включений. Возможно, это связано с увеличением скорости полимеризации, вследствие чего возрастает вязкость композиции, и движение макромолекул затрудняется, происходит обрыв цепи.

 

Рис. 1.9 Зависимость содержания нерастворимой гель-фракции от количества фотоинициатора для состава 41ГМА+41ТХЭФ+15ЛИМ+3ФК

 

Для состава 41ГМА+41ТХЭФ+15ЛИМ+3ФК+0,4 ин была определена зависимость содержания нерастворимой гель-фракции от времени полимеризации. Как видно из графика с увеличением времени полимеризации до 40 мин содержание гель-фракции увеличивается, а после достижения 40 мин снижается.

 

Рис. 1.10 Зависимость содержания нерастворимой гель-фракции от времени полимеризации состава 41ГМА+41ТХЭФ+15ЛИМ+3ФК

 

Для состава 41ГМА+41ТХЭФ+15ЛИМ+3ФК+0,4 ин была определена зависимость вязкости состава от времени его приготовления. Из графика рис. 1.11 можно сделать вывод, что с течением времени вязкость раствора увеличивается.

 

Рис. 1.11 Зависимость вязкости от времени приготовления состава


Составы не поддерживают горение на воздухе и имеет невысокие потери массы, это позволяет отнести его к классу трудногорючих материалов. Кислородный индекс исследуемого состава 30% объем.

 

1.1.6 Выводы и практические рекомендации

1. В результате проведенной работы исследованы свойства исходных компонентов, используемых в составе композиции для органического стекла. Определен механизм полимеризации ГМА. Показано, что полимеризация ГМА происходит с раскрытием двойных связей и эпоксидного кольца с образованием трехмерной структуры. Выход гель-фракции составляет 90%. Предложена схема полимеризации.

2. Оценена методом ТГА устойчивость исходных компонентов при воздействии повышенных температур. Установлено, что все компоненты относятся к коксообразующим и деструкция которых протекает в приблизительно одинаковом температурном интервале.

3. Установлен анализом данных ИКС механизм сополимеризации ГМА и ТХЭФ и предложена схема сополимеризации.

4. Осуществлен выбор времени полимеризации для составов, содержащих ГМА, ТХЭФ, ЛИМ и ФК на основании данных ИКС, ТГА и по содержанию гель-фракции в полимеризате. Показано сохранение ненасыщенности полимеризата до времени полимеризации 60 мин. При этом увеличивается содержание гель-фракции. Увеличение продолжительности полимеризации приводит к процессу деструкции.

5. Исследована зависимость внешнего вида образцов и содержания гель-фракции от состава композиции.

6. Выбран состав 41ГМА+41ТХЭФ+15ЛИМ+3ФК, который обладает оптимальными свойствами для органического стекла. Для него исследована зависимоть содержания гель-фракции от времени полимеризации и от количества фотоинициатора в составе, определена вязкость состава.

 


Технологическая часть


Поделиться с друзьями:

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.04 с.