Классификация рентгеновских трубок — КиберПедия 

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Классификация рентгеновских трубок

2020-11-19 117
Классификация рентгеновских трубок 0.00 из 5.00 0 оценок
Заказать работу

1. По назначению

1. Диагностические

2. Терапевтические

3. Для структурного анализа

4. Для просвечивания

2. По конструкции

1. По фокусности

· Однофокусные (на катоде одна спираль, а на аноде одно фокусное пятно)

· Двухфокусные (на катоде две спирали разного размера, а на аноде два фокусных пятна)

2. По типу анода

· Стационарный (неподвижный)

· Вращающийся

Рентгеновские лучи применяются не только в рентгенодиагностических целях, но также и в терапевтических. Как было отмечено выше, способноcть рентгеновского излучения подавлять рост опухолевых клеток позволяет использовать его в лучевой терапии онкологических заболеваний. Помимо медицинской области применения, рентгеновское излучение нашло широкое применение в инженерно-технической сфере, материаловедении, кристаллографии, химии и биохимии: так, например, возможно выявление структурных дефектов в различных изделиях (рельсах, сварочных швах и пр.) с помощью рентгеновского излучения. Вид такого исследования называется дефектоскопией. А в аэропортах, на вокзалах и других местах массового скопления людей активно применяются рентгенотелевизионные интроскопы для просвечивания ручной клади и багажа в целях безопасности.

В зависимости от типа анода, рентгеновские трубки различаются по конструкции. В силу того, что 99% кинетической энергии электронов переходит в тепловую энергию, во время работы трубки происходит значительное нагревание анода — чувствительная вольфрамовая мишень часто сгорает. Охлаждение анода осуществляется в современных рентгеновских трубках при помощи его вращения. Вращающийся анод имеет форму диска, который распределяет тепло по всей своей поверхности равномерно, препятствуя локальному перегреву вольфрамовой мишени.

Конструкция рентгеновских трубок различается также по фокусности. Фокусное пятно — участок анода, на котором происходит генерирование рабочего пучка рентгеновского излучения. Подразделяется на реальное фокусное пятно и эффективное фокусное пятно (рис. 12). Из-за того, что анод расположен под углом, эффективное фокусное пятно меньше, чем реальное. Различные размеры фокусного пятна используются в зависимости от величины области снимка. Чем больше область снимка, тем шире должно быть фокусное пятно, чтобы покрыть всю площадь снимка. Однако меньшее фокусное пятно формирует лучшую чёткость изображения. Поэтому при производстве небольших снимков используется короткая нить накала и электроны направляются на небольшую область мишени анода, создавая меньшее фокусное пятно.

1.

 

Законы распространения рентгеновых лучей подобны законам распространения света. Как световое излучение, рентгеновы лучи при взаимодействии со средой частично поглощаются, частично отражаются и рассеиваются. Но так как длина волны рентгеновых лучей мала, а энергия квантов велика, то они обладают еще другими свойствами: 1) проникают через среды различной плотности — картон, дерево, ткани организма животного и т. д. Проникающая способность рентгеновых лучей тем больше, чем короче длина волны и, следовательно, больше энергия квантов. Глубина проникновения рентгеновых лучей в ту или иную среду, или степень ослабления интенсивности рентгеновского излучения при прохождении через слой того или другого материала, зависит не только от коротковолновости или энергии квантов, но и от свойств материала: чем плотнее среда, тем больше в ней поглощаются рентгеновы лучи. Например, слой воды толщиной 35 см ослабляет интенсивность потока рентгеновых лучей, генерированных при напряжении 200 кв, в такой же степени, как слой железа 4,75 см или бетона толщиной 17,23 см;

2) вызывают свечение — люминесценцию некоторых химических соединений. Одни вещества светятся в момент действия рентгеновых лучей, такое свечение называется флуоресценцией. Другие вещества продолжают светиться некоторое время после того, как рентгеновы лучи прекратили действие, это свечение называется фосфоресценцией;

3) подобно видимому свету, вызывают изменения в галоидных соединениях серебра, входящих в состав фотоэмульсий. Иначе говоря, вызывают фотохимические реакции;

4) вызывают ионизацию нейтральных атомов и молекул. В результате ионизации образуются положительно и отрицательно заряженные частицы — ионы. Ионизированная среда становится проводником электрического тока. Это свойство используют для измерения интенсивности лучей с помощью так называемой ионизационной камеры.

5) В основе биологического действия рентгеновых лучей лежит явление ионизации – углеводы-, жиры, белок – повреждение SH- связей.

 

 


Поделиться с друзьями:

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.