Конструкция асинхронного двигателя локомотива — КиберПедия 

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Конструкция асинхронного двигателя локомотива

2021-01-29 155
Конструкция асинхронного двигателя локомотива 0.00 из 5.00 0 оценок
Заказать работу

 

Сердечник статора асинхронного двигателя набирается из тонких штампованных листов электротехнический стали для уменьшения потерь на вихревые токи. На внутренней поверхности имеются пазы, в которые укладываются изолированные проводники обмотки статора в виде отдельных катушек для каждой фазы. Собранный сердечник с обмоткой устанавливают в станине электродвигателя.

 

    

 

Рисунок 32. Статор асинхронного электродвигателя: 1 – паз; 2 – секция обмотки статора

 

Ротор двигателя имеет сердечник из штампованных листов электротехнической стали. В пазы ротора укладывается обмотка. В зависимости от типа обмотки ротора асинхронные электродвигатели разделяются на двигатели с короткозамкнутым ротором и фазным ротором. Простейшим является короткозамкнутый ротор. Короткозамкнутая обмотка выполняется из медных стержней, соединенных по торцам медными кольцами (рис. 33). Такого типа обмотка получила название «беличьей клетки» или «беличьего колеса».

 

Рисунок 33. Короткозамкнутый ротора асинхронного двигателя: 1 – короткозамыкающие кольца; 2 – стержни; 3 – вал; 4 – сердечник ротора

 

Иногда «беличье колесо» выполняется из алюминия, заливаемого в пазы ротора.

Фазный ротор (см. рис.34) снабжен обмоткой из изолированного провода, ее концы присоединяют к контактным кольцам ротора. Через щеточный аппарат обмотка замыкается на пусковой реостат (омическое сопротивление).

Рисунок 34. Фазный ротор асинхронного двигателя: 1 – контактные кольца; 2 – сердечник ротора; 3 – обмотка

 

Пусковой реостат увеличивает сопротивление обмотки ротора. При пуске двигателя с помощью пускового реостата (см. рис. 35) резко снижается сила пускового тока. Пусковой реостат позволяет осуществить плавное регулирование вращения ротора в определенных пределах.

Из опыта эксплуатации тепловозов известно, что наиболее уязвимыми частями тяговых двигателей являются изоляция сложной по конструкции якорной обмотки, коллектор, щетки. Нарушения изоляции якоря, повреждения и износ коллектора требуют сложного ремонта тяговых двигателей. Сколотые, разрушенные щетки следует немедленно заменить, так как это может привести к тяжелым повреждениям коллектора, обмоток двигателя.

 

 

Рисунок 35. Электрическая схема асинхронного двигателя с фазным ротором (слева) и его условное графическое изображение (справа): 1 – статор; 2 – ротор; 3 – контактные кольца со щётками; 4 – пусковой реостат

 

Замену щеток практически можно производить лишь в депо, притирка новых щеток по коллектору весьма трудоемка. Образующаяся при износе и повреждении щеток графитовая токопроводящая пыль может вызвать замыкания между секциями обмотки двигателей и их повреждению, поэтому тяговые электродвигатели постоянного тока требуют систематического ухода, очистки и продувки сжатым воздухом.

По сравнению с электродвигателями постоянного тока асинхронный двигатель трехфазного тока с короткозамкнутым ротором отличается рядом преимуществ. Действительно, в асинхронных двигателях такого типа ротор имеет простейшую конструкцию. В нем нет тяжелого коллектора, сложной обмотки, которая должна быть тщательно изолирована; не имеется и капризного в эксплуатации щеточного аппарата. Кроме того, ввиду отсутствия коллектора в асинхронных двигателях не нужны устройства, облегчающие процесс коммутации, в том числе и добавочные полюсы.

Максимальная частота вращения ротора не ограничивается допустимой окружной скоростью коллектора. Вращающееся магнитное поле позволяет обеспечить более высокое использование электромагнитных сил в электродвигателе. Поэтому асинхронный двигатель по сравнению с двигателем постоянного тока имеет меньшую массу, для его изготовления расходуется меньше дефицитных материалов.

Снижение массы тягового двигателя является весьма важным еще и потому, что приводит к уменьшению воздействия неподрессоренных масс локомотива на железнодорожный путь. Асинхронные двигатели значительно надежнее в эксплуатации, менее трудоемки в обслуживании и ремонте.

Как указывалось выше, частота вращения ротора асинхронного двигателя не может достигнуть частоты вращения магнитного потока статора. Благодаря этому асинхронные двигатели не допускают резкого повышения частоты вращения ротора при снятии механической нагрузки. В условиях применения их на тепловозах это означало бы исключение боксования колесных пар со значительным увеличением частоты их вращения. Особенно заманчивым казалось использование асинхронных тяговых двигателей на тепловозах с тяговыми генераторами переменного тока. В этом случае вырабатываемый генератором ток может быть непосредственно направлен в асинхронные тяговые двигатели. Главное препятствие на пути внедрения тяговых асинхронных электродвигателей — это трудность регулирования частоты их вращения для изменения скорости движения тепловоза при постоянной частоте вращения и мощности дизель-генератора.

Ступенчатое регулирование частоты вращения ротора асинхронного двигателя достигается путем изменения числа пар полюсов статорной обмотки. Однако применение такого способа регулирования не обеспечивает плавного изменения силы тяги тепловоза и скорости движения, значительно усложняет электрическую схему, так как необходимо производить переключения статорных обмоток двигателей. Использование фазных роторных обмоток двигателей с реостатами во внешней цепи не только усложняет электрическое оборудование тепловоза, но и снижает его КПД вследствие дополнительных потерь энергии.

Новые широкие возможности преобразования параметров электрического тока открывает применение полупроводниковой техники. Весьма компактные полупроводниковые приборы совместно со специальной системой управления их работой позволяют питать асинхронные тяговые двигатели электрическим током необходимой частоты в зависимости от скорости движения локомотива.

 

Синхронный генератор

 

Все тепловозные силовые установки сначала оборудовались тяговыми генераторами, вырабатывавшими постоянный ток, который непосредственно использовался для питания тяговых электродвигателей. Развитие отечественного и зарубежного тепловозостроения сопровождалось непрерывным повышением секционной мощности тепловозов. Увеличение массы поездов, скоростей движения настоятельно требовало применения все более мощных локомотивов.

Однако при создании более мощных тяговых генераторов постоянного тока для тепловозов встретился ряд трудностей. С увеличением мощности значительно возрастали размеры генераторов. В то же время для обеспечения надежной работы коллектора и щеток линейная окружная скорость цилиндрической поверхности коллектора не должна превышать 60-70 м/с. Это требование ограничивает увеличение диаметра коллектора и, следовательно, диаметра якоря генератора. Далее, для предупреждения недопустимого искрения на коллекторе и повреждения генератора в результате появления кругового огня напряжение между соседними пластинами коллектора не должно превышать определенной величины (приблизительно 35В). В результате ограничивается и максимальная длина витков обмотки якоря и, следовательно, длина якоря. Действительно, при одинаковой линейной скорости движения в магнитном поле индуктируемая электродвижущая сила в каждом витке обмотки будет пропорциональна длине ее активных сторон.

Таким образом, создание тепловозных тяговых генераторов постоянного тока большой мощности вызывало не только рост размеров и массы, осложняя их размещение на локомотиве, но и наталкивалось на принципиальные трудности. Эта проблема коренным образом могла решаться только путем отказа от применения в электрических машинах коллектора. Коллектор служит для выпрямления тока, вырабатываемого в обмотке якоря генератора, поэтому отказ от его использования практически означает переход на электрическую машину переменного тока. Так на мощных тепловозах получили применение тяговые генераторы переменного тока с выпрямительными установками для питания постоянным током тяговых электродвигателей.


Поделиться с друзьями:

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.