Скорость распространения ультразвука — КиберПедия 

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Скорость распространения ультразвука

2020-08-20 174
Скорость распространения ультразвука 0.00 из 5.00 0 оценок
Заказать работу

Скорость распространения ультразвука

Скорость распространения ультразвуковых волн в неограниченной среде определяется характеристиками упругости и плотностью среды. В ограниченных средах на скорость распространения волн влияет наличие и характер границ, что приводит к частотной зависимости скорости (дисперсия скорости звука). Уменьшение амплитуды и интенсивности ультразвуковых волны по мере ее распространения в заданном направлении, то есть затухание звука, вызывается, как и для волн любой частоты, расхождением фронта волны с удалением от источника, рассеянием и поглощением звука. На всех частотах как слышимого, так и неслышимых диапазонов имеет место так называемое «классическое» поглощение, вызванное сдвиговой вязкостью (внутренним трением) среды. Кроме того, существует дополнительное (релаксационное) поглощение, часто существенно превосходящее «классическое» поглощение[8].

Применение ультразвука

В разных средах ультразвук ведет себя по-разному. В газах и, в частности, в воздухе распространяется с большим затуханием. Жидкости и твёрдые тела (в особенности монокристаллы) представляют собой, как правило, хорошие проводники ультразвука, затухание в которых значительно меньше. Так, например, в воде затухание ультразвука при прочих равных условиях приблизительно в 1000 раз меньше, чем в воздухе. Поэтому области использования ультразвука относятся почти исключительно к жидкостям и твёрдым телам[1].

Ультразвук применяется:

1. В природе

2. В медицине

3. В военных целях

4. В физике

5. В обработке металлов

Применение ультразвук в природе

Летучие мыши, использующие при ночном ориентировании эхолокацию (Рис.1), испускают при этом ртом или имеющим форму параболического зеркала носовым отверстием сигналы чрезвычайно высокой интенсивности. На расстоянии 1 — 5 см от головы животного давление ультразвука достигает 60 мбар, то есть соответствует в слышимой нами частотной области давлению звука, создаваемого молотком. Эхо своих сигналов летучие мыши способны воспринимать при давлении всего 0,001 мбар, то есть в 10000 раз меньше, чем у испускаемых сигналов. При этом летучие мыши могут обходить при полете препятствия даже в том случае, когда на эхолокационные сигналы накладываются ультразвуковые помехи с давлением 20 мбар. Механизм этой высокой помехоустойчивости еще неизвестен. При локализации летучими мышами предметов, например, вертикально натянутых нитей с диаметром всего 0,005 — 0,008 мм на расстоянии 20см (половина размаха крыльев), решающую роль играют сдвиг во времени и разница в интенсивности между испускаемым и отраженным сигналами[3].

Рис.1 Эхолокация летучей мыши

Диагностическое применение ультразвука в медицине

Благодаря хорошему распространению ультразвука в мягких тканях человека, его относительной безвредности по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией, ультразвук широко применяется для визуализации состояния внутренних органов человека, особенно в брюшной полости и полости таза.

Помимо широкого использования в диагностических целях (см. Ультразвуковое исследование), ультразвук применяется в медицине (в том числе регенеративной) в качестве инструмента лечения[3].

Ультразвук обладает следующими эффектами:

§ противовоспалительным, рассасывающим действиями;

§ анальгезирующим, спазмолитическим действиями;

§ кавитационным усилением проницаемости кожи.

Принцип работы УЗИ-сканера (Рис.2)

Частота ультразвука, необходимая для медицинской визуализации, находится в диапазоне 1 — 20 МГц. Эти колебания получают при использовании пьезоэлектрических материалов. Когда электрическое поле помещается через срезы, оно расширяется или сжимается. При отражении сигнал возвращается, вызывая переменное электрическое поле, которое заставляет кристалл вибрировать[6].

Для достижения пьезоэлектрического эффекта в УЗИ-сканерах используются специальные элементы из кварца, титана или бария. Их толщина подбирается таким образом, чтобы обеспечить лучшее резонирование. На границе двух сред происходит передача или отражение звука, это зависит от того, насколько различны ткани, имеющие общую границу. Чем больше разница, тем сильнее будет отражаться сигнал[6].

уровень сопротивления воздуха и воды различен, поэтому чтобы получить более контрастное изображение кожу пациента смазывают специальным гелем, в котором не могут образовываться воздушные пузырьки[6].

Полученный электрический сигнал усиливается и обрабатывается. Таким образом фиксируется ультразвук, отраженный от препятствия. Обычно кристаллов бывает два – передающий и приемный. Они оба встроены в генератор, представляющий собой устройство, преобразующее электрическую энергию[6].

Изображение передается на экран прибора в виде срезов, окрашенных в виде 64-оттеночной черно-белой шкалы. Эхопозитивные участки при этом имеют темный, а эхонегативные – белый цвет. При обратной регистрации изображении оттенки могут меняться[6].

Рис.2 Принцип работы узи

Принцип работы эхолотов

Эхолот состоит из четырех основных элементов: передатчика (излучателя), приемника (датчика), преобразователя (тран-дюсера) и экрана (дисплея).

Передатчик вырабатывает следующие через определенные интервалы времени высокочастотные импульсы. В современных эхолотах применяются частоты 50 и 200 кГц, иногда встречается частота 192 кГц. Излучаемые преобразователем звуковые сигналы распространяются в воде со скоростью около 1500 м/сек. и отражаются от дна, рыб, водорослей, камней и пр. предметов (Рис.3). Достигшие до приемника эхо-сигналы возбуждают в нем электрические импульсы, которые затем усиливаются в преобразователе и поступают в дисплей. Преобразованные результаты зондирования отображаются на экране прибора в удобной для восприятия графической или алфавитно-цифровой форме[7].

Рис. 3. Принцип работы эхолота

Дисплей отображает результаты ультразвукового зондирования и управляет работой прибора. Для этого на нем имеется жидкокристаллический монохромный или цветной экран и клавиатура[7].

Ультразвуковая сварка

Из существующих методов ни один не подходит для сварки разнородных металлов или если к толстым деталям нужно приварить тонкие пластины. В этом случае УЗ-вая сварка незаменима. Ее иногда называют холодной, потому что детали соединяются в холодном состоянии. Окончательного представления о механизме образования соединений при ультрозвуковой сварке нет. В процессе сварки после ввода ультразвуковых колебаний между свариваемыми пластинами образуется слой высокопластичного металла, при этом пластины очень легко поворачиваются вокруг вертикальной оси на любой угол. Но как только ультразвуковое излучение прекращают, происходит мгновенное «схватывание» пластин.

Ультразвуковая сварка происходит при температуре значительно меньшей температуры плавления, поэтому соединение деталей происходит в твердом состоянии. С помощью УЗ можно сваривать многие металлы и сплавы (медь, молибден, тантал, титан, многие стали). Наилучшие результаты получаются при сварке тонколистовых разнородных металлов и приварке к толстым деталям тонких листов. При УЗ-вой сварке минимально изменяются свойства металла в зоне сварки. Требования к качеству подготовки поверхности значительно ниже, чем при других методах сварки. УЗ сварке хорошо поддаются и неметаллические материалы (пластмасса, полимеры)[3,8].

Скорость распространения ультразвука

Скорость распространения ультразвуковых волн в неограниченной среде определяется характеристиками упругости и плотностью среды. В ограниченных средах на скорость распространения волн влияет наличие и характер границ, что приводит к частотной зависимости скорости (дисперсия скорости звука). Уменьшение амплитуды и интенсивности ультразвуковых волны по мере ее распространения в заданном направлении, то есть затухание звука, вызывается, как и для волн любой частоты, расхождением фронта волны с удалением от источника, рассеянием и поглощением звука. На всех частотах как слышимого, так и неслышимых диапазонов имеет место так называемое «классическое» поглощение, вызванное сдвиговой вязкостью (внутренним трением) среды. Кроме того, существует дополнительное (релаксационное) поглощение, часто существенно превосходящее «классическое» поглощение[8].

Применение ультразвука

В разных средах ультразвук ведет себя по-разному. В газах и, в частности, в воздухе распространяется с большим затуханием. Жидкости и твёрдые тела (в особенности монокристаллы) представляют собой, как правило, хорошие проводники ультразвука, затухание в которых значительно меньше. Так, например, в воде затухание ультразвука при прочих равных условиях приблизительно в 1000 раз меньше, чем в воздухе. Поэтому области использования ультразвука относятся почти исключительно к жидкостям и твёрдым телам[1].

Ультразвук применяется:

1. В природе

2. В медицине

3. В военных целях

4. В физике

5. В обработке металлов


Поделиться с друзьями:

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.015 с.