Износ деталей цилиндро-поршневой группы — КиберПедия 

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Износ деталей цилиндро-поршневой группы

2020-06-02 1116
Износ деталей цилиндро-поршневой группы 0.00 из 5.00 0 оценок
Заказать работу

Износ деталей цилиндро-поршневой группы зависит от целого ряда факторов.

Цилиндры (гильзы) изнашиваются в основном в результате трения поршневых колец, действия абразивных частиц о поверхности цилиндров и коррозии.

В процессе сгорания топлива в цилиндре резко повышаются температура и давление газов. Газы проникают за поршневые кольца и прижимают их к зеркалу цилиндра, вследствие чего повышается удельное давление колец на поверхность цилиндра.

Возрастание удельного давления поршневых колец на стенку цилиндров приводит к резкому увеличению силы трения во время движения колец, выдавливанию масляного слоя из-под них, вследствие чего между кольцами и цилиндром возникает граничное трение.

Образование граничного трения между первым поршневым кольцом и цилиндром способствует также неплотное прилегание кольца к поверхности цилиндра по окружности. Даже при незначительном просвете между ними масляная пленка с поверхности цилиндра сдувается газами, проникающими через эти неплотности, в результате чего между поверхностями кольца и цилиндра возникает граничное трение. Кроме того, при высоких температурах вязкость масла резко снижается, что влечет за собой уменьшение прочности масляной пленки, и она местами разрывается.

Исследования влияния вязкости масла на износ цилиндров и механические потери в тракторных и автомобильных двигателях показали, что износ, вызванный электростатическими явлениями при трении, может составлять заметную часть общего износа. С понижением вязкости электростатическая прочность тонких масляных пленок уменьшается.

 

Помимо физико-механических факторов (температура и давление), на изнашивание цилиндров оказывает большое влияние химическое воздействие продуктов сгорания.

В процессе сгорания топлива получается целый ряд кислот и других химических соединений (кислород, углекислый газ, пары воды, муравьиная, уксусная, угольная, серная и азотная кислоты), которые вызывают усиленную коррозию металла цилиндра в обнаженных от масла местах.

На интенсивность изнашивания цилиндров под химическим воздействием агрессивных веществ большое влияние оказывает температурный режим двигателя.

Исследования показывают, что износ цилиндров повышается при температуре стенки цилиндра ниже 90° С (рис. 2). Увеличение из­носа поверхности цилиндров при температуре, меньше указанной, бъясняется тем, что при более низких температурах на стенках илиндров конденсируются водяные пары и с продуктами сгорания бразуют кислоты, под воздействием которых повышается корро-ийный износ рабочей поверхности цилиндров.

О влиянии температуры на изнашивание свидетельствует разница износе отдельных цилиндров одного и того же двигателя. В одном и том же блоке цилиндры, ближе расположенные к вентилятору, изнашиваются больше.

Снижение скорости поршня до нуля в момент перехода через в. м.т. способствует разрушению масляной пленки и повышению темпа изнашивания, что служит одним из факторов, ухудшающих условия работы колец.

Следовательно, наибольшему износу детали подвержены в верхней части цилиндра, в зоне высоких давлений и температур, высокой концентрации химически активных соединений и ухудшенных условий смазки.

Таким образом, цилиндры автотракторных двигателей неравномерно изнашиваются по длине, но они неравномерно изнашиваются и по окружности.

Цилиндры автомобильных и гильзы тракторных двигателей в работе деформируются, вследствие чего нарушается их форма. Цилиндры деформируются в результате разностенности, неправильной затяжки болтов крепления головки блока, неравномерного нагрева цилиндра, недостаточной жесткости верхней стенки блока.

Износ цилиндра по окружности зависит также от перекоса поршня при движении в цилиндре, в плоскости качания шатуна, вследствие чего наблюдается скребущее действие кромок поршневых колец.

Износ цилиндров и шатунных шеек коленчатого вала в значительной мере зависит от изгибов шатуна и коленчатого вала, а также от перекосов в шатунно-поршневой группе. В этих случаях поршень работает в цилиндре с перекосом. Расположение большей оси овала цилиндров в плоскости продольной оси коленчатого вала свидетельствует об изгибе шатуна, нежесткости коленчатого вала или перекосе, полученном при сборке шатуна с поршнем.

Поршневые кольца изнашиваются по наружному диаметру в результате трения о поверхность цилиндра и по высоте вследствие трения о торцы канавок поршней. Одновременно изнашиваются торцовые поверхности канавок поршня.

Наиболее быстро изнашиваются первое поршневое кольцо и первая канавка поршня, так как это сочленение работает в наиболее тяжелых температурных, абразивных и нагрузочных условиях при недостатке смазки. Кольца обычно изнашиваются в несколько раз быстрее канавок, и зазор между ними увеличивается главным образом вследствие износа кольца.

Поршневые кольца во время работы теряют свою упругость в результате износа их по толщине и высоте, а также от воздействия высоких температур, вследствие чего происходит релаксация внутренних напряжений.

По мере износа цилиндра и наружной поверхности поршневых колец резко увеличивается зазор в стыке.

У канавок поршня больше изнашивается нижний торец, так как эта поверхность подвергается большему давлению колец. Кроме того, поршневые кольца почти всегда (исключая такт всасывания) прилегают к этой поверхности.

После смены изношенного поршневого кольца новое кольцо и канавка поршня изнашиваются значительно быстрее новых пар. Это объясняется тем, что форма канавок не соответствует форме кольца, последнее прилегает к торцу канавки не по всей поверхности, в результате чего резко увеличивается удельное давление кольца на поверхность канавки. Кроме того, кольцо недостаточно плотно прилегает к изношенной и искаженной поверхности цилиндра. При этом удельное давление на кольцо и цилиндр распределяется неравномерно. Все это приводит к быстрому износу новых колец, работающих в изношенных цилиндрах.

Износ деталей цилиндро-поршневой группы зависит также от работы и состояния системы очистки воздуха. При недостаточной очистке воздуха в цилиндр попадают абразивные частицы, которые значительно усиливают износ деталей цилиндро-поршневой группы.

Масла, имеющие абразивные примеси, низкую вязкость и химически активные вещества, также усиливают износ деталей цилиндро-поршневой группы.

В результате износа цилиндров, поршневых колец и канавок поршня снижается компрессия при запуске и на малой частоте вращения двигателя, так как при недостаточной плотности прилегания компрессионных колец к цилиндрам и канавкам поршня значительная часть заряда прорывается через неплотности при медленном вращении коленчатого вала.

При падении компрессии особенно сильно затрудняется пуск дизеля в холодное время, ввиду того что в конце сжатия не достигается температура воздуха, достаточная для самовоспламенения топлива.

Износ цилиндров, канавок поршня, колец по высоте и диаметру приводит к увеличению зазоров, через которые перекачивается масло в камеру сгорания.

Расход картерной смазки в процентах к израсходованному топливу зависит также от размера зазора между гильзой цилиндра и поршнем и овальности гильзы двигателя.

Перерасход масла приводит к образованию нагара на поршнях и камерах сгорания, ухудшению теплоотдачи, образованию абразивной грязи и усилению износа деталей цилиндро-поршневой группы двигателя.

При износе деталей цилиндро-поршневой группы резко увеличивается количество газов, проникающих из камеры сгорания в картер.

Прорыв газов в картер приводит к повышению давления в нем, в результате чего масло частично выжимается через неплотности соединений наружу. Это приводит к частичному снижению мощности двигателя и вызывает разжижение, загрязнение и ухудшение химико-физических свойств масла.

Внешний признак прорыва газов в картер и повышение давления в нем — появление светлого газа из сапуна.

Отверстия в бобышках поршня, поршневые пальцы и втулки верхней головки шатунов изнашиваются в результате работы сил трения при изменении направления движения поршня.

Основным внешним признаком износа этих деталей служит появление стуков, носящих резкий, металлический характер и хорошо прослушиваемых в верхней части цилиндра при изменении частоты вращения коленчатого вала двигателя.

Бобышки поршня, поршневой палец и втулка верхней головки шатуна двигателя изнашиваются менее интенсивно, чем цилиндры, поршневые кольца и канавки поршня.

Если двигатель выходит из строя в результате только износа поршневых пальцев, бобышек поршня и втулок шатунов, это указывает на то, что во время ремонта не были обеспечены надлежащее качество обработки поверхностей и требуемые значения зазоров и натягов в соединениях этих деталей или был допущен перекос деталей при их сборке.

Восстановление цилиндров и гильз. Технология восстановления цилиндров и гильз в основном зависит от их конструкции. Цилиндры автотракторных двигателей конструктивно выполняются различно. У одних двигателей цилиндры отлиты и расточены непосредственно в блоке, в цилиндры запрессованы короткие гильзы из легированого чугуна. Все современные тракторные и комбайновые двигатели, как правило, выполнены со сменными гильзами.

Гильзы тракторных двигателей в целях увеличения сроков службы отливают из легированного чугуна СЧ 21-40 и подвергают поверхностной закалке до получения твердости не ниже HRC 40.

Для выявления износа гильзу цилиндра (или цилиндр) измеряют индикаторным нутромером в двух взаимно перпендикулярных плоскостях на расстоянии 15—30 мм от верхней кромки и посредине и определяют ремонтный размер, под который необходимо расточить цилиндр.

К полученному размеру цилиндра в максимально изношенном участке добавляют два припуска на невыход резца и на последующую обработку. Ближайший ремонтный размер цилиндра должен быть больше (или равен) расчетному, т. е. где — ремонтный размер цилиндра, мм; — наибольший диаметр изношенного цилиндра; а — припуск на невыход резца (0,02—0,03 мм); б —- припуск на последующую обработку (0,02—0,03 мм).

Для тракторных гильз принят один ремонтный размер. Для цилиндров автомобильных двигателей принято большее число ремонтных размеров, например через 0,5 мм. Промышленностью выпускаются ремонтные поршни и кольца, соответствующие ремонтным размерам гильз и цилиндров.

При расточке под ремонтный размер восстанавливают геометрическую форму и чистоту поверхности гильзы. Расточку ведут на специальных расточных станках (типа 2В-697) или на токарных станках в соответствующих кондукторах. Гильзы закрепляют в кондукторах посадочными местами и верхним буртиком. Предварительно эти места должны быть тщательно очищены от остатков накипи и возможных заусенцев. Гильзы и блоки на станке центрируют при. помощи оправки, вставляемой в шпиндель станка. При этом шаровой конец оправки должен находиться от оси шпинделя на расстоянии, равном половине диаметра растачиваемого цилиндра, и входить в цилиндр на глубину 3—4 мм.

Центрирование гильзы достигается поворотом шпинделя.

Во время расточки цилиндров в блоке каждый цилиндр центрируют отдельно, после чего закрепляют кондуктор (или блок) на станке. Затем оправку заменяют резцовой головкой.

При расточке оставляют припуск (0,03—0,05 мм) на хонингование, при котором обрабатывают цилиндр до точного размера и придают ему гладкую чистую поверхность.

Для хонингования гильз используют хонинговальные или сверлильные станки с хонинговальными головками. При хонинговании зернистость бруска выбирают в зависимости от требуемой чистоты поверхности цилиндра, а твердость связки — в зависимости от характера операции и твердости обрабатываемого материала. Например, при обработке цилиндров двигателя ЗИЛ-120 (из серого чугуна СЧ 18-36 твердостью НВ 179-229) для предварительной доводки применяют бруски из зеленого карборунда зернистостью 120 и твердостью С2-СТ, а для окончательной — бруски из зеленого карборунда зернистостью 400 и твердостью СМ-СМ1, при этом получают шероховатость поверх­ности 9-го класса.

При хонинговании цилиндров также применяют бруски из искусственных алмазов.

Окружную скорость при хонинговании можно принимать для предварительной обработки в пределах 60—85 м/мин и для окончательной доводки в пределах 45—60 м/мин. Скорость возвратно-поступательного движения доводочной головки принимают равной окружной скорости.

Для получения во время хонингования чистой поверхности мельчайшие частицы от износа абразивного бруска и металлическую стружку удаляют сильной струей охлаждающей жидкости (керосина или смеси из керосина и 15—20% машинного масла). Все цилиндры (или гильзы) должны быть обработаны под один размер в пределах установленного допуска на диаметр нового цилиндра.

Электрохимическое хонингование. Исследования показали, что этот способ может быть применен для восстановления закаленных гильз цилиндров автотракторных двигателей до ремонтных размеров без расточки. При этом возможно удаление больших припусков с высокой производительностью и исправление погрешностей формы изно­шенного отверстия в пределах снимаемого припуска.

Производительность электрохимического хонингования по сравнению с механическим в 5—6 и более раз выше и характеризуется линейной зависимостью от плотности тока и времени обработки. Оптимальная скорость движения хонинговальных брусков составляет 100—120 м/мин.

Механизм выравнивания микро - и макронеровностей поверхности определяется механическим действием брусков и происходит за счет депассивации вершин выступов (депассивация – процесс обратный пассивированию металлов т. е перевод в пассивное состояние, при котором они становятся коррозионноустойчивыми). Шероховатость поверхности после выравнивания микро - и макронеровностей зависит от зернистости алмазных брусков и незначительно от удельного давления и скорости движения брусков. Алмазные бруски АСМ28 обеспечивают получение 9-го класса чистоты поверхности по ГОСТ 2781-59.

После окончания обработки для удаления с зеркала цилиндра абразивной пыли его промывают теплой мыльной водой или чистым керосином и сушат.

Овальность и конусность цилиндра должны быть в пределах, допускаемых техническими условиями для данного двигателя. Рабочая поверхность цилиндра должна быть чистой, без следов обработки резцом, царапин, задиров и забоин.

Все окончательно обработанные гильзы сортируют по внутреннему диаметру по размерным группам через 0,02 мм для комплектования с поршнями соответствующей размерной группы.

При необходимости гильзования цилиндр растачивают согласно размерам гильз.

Цилиндры под гильзы растачивают с несколько измененными режимами резания (увеличенной подачей и глубиной резания).

Наружную поверхность гильзы обрабатывают так, чтобы ее можно было запрессовать в блок с натягом в пределах 0,10—0,15 мм. Внутреннюю поверхность гильзы растачивают с припуском 2,5—3,0 мм на расточку и хонингование после запрессовки в блок цилиндров.

Перед запрессовкой гильз блок цилиндров целесообразно нагревать до температуры 100—120° С; при запрессовке без подогрева гильзу с наружной стороны смазывают тонким слоем масла.

Гильзы запрессовывают при помощи 20-тонного гидравлического пресса. После запрессовки торец гильзы должен располагаться заподлицо с плоскостью разъема блока или утопать не более чем на 0,2 мм.

Блок с запрессованными гильзами подвергают гидравлическому испытанию под давлением воды 0,4 МПа в течение 2—3 мин. Течь воды при этом не допускается. Допускается только отпотевание на участке не выше 50 мм от нижнего края гильзы. Гильзованные цилиндры растачивают и хонингуют до нормального размера так же, как и при обработке под ремонтный размер.

Восстановление поршневых пальцев. Поршневые пальцы могут быть. восстановлены хромированием, плазменным напылением или раздачей с последующей термообработкой, шлифованием и сортированием на размерные группы. Наиболее распространено хромирование. Оно выполняется в определенной технологической последовательности.

Вначале поршневые пальцы шлифуют на бесцентрово-шлифовальном станке для придания им правильной геометрической формы. Промытые и высушенные поршневые пальцы монтируют на подвеску.

Затем их обрабатывают в ванне для электролитического обезжиривания в электролите, содержащем едкий натр, кальцинированную соду, 2—5 г/л жидкого стекла. Промывают в горячей (70—80° С), затем в холодной воде. Проводят анодное декапирование в ванне для электролитического декапирования в электролите. Т = 0,5 -1 мин.

После этого проводят хромирование (в ванне МН-2-58Х-2-7) электролите, содержащем 150—200 г/л хромового ангидрида и 1,5—2 г/л серной кислоты. Режим: t = 57° С, DK = 35 ч-40 А/дм2.

Время Т хромирования определяется по формуле в зависимости т толщины наносимого покрытия и припусков на последующую обработку.

После хромирования поршневые пальцы промывают в дистиллированной, а затем в холодной проточной воде. Обезводороживание выполняют в сушильном шкафу при температуре 150—1800 С в течение 2—3 ч.

Заключительные операции — шлифование, полирование и сортировка пальцев на размерные группы по наружному диаметру.

Восстановление втулок верхних головок шатунов. Изношенные по внутреннему диаметру втулки обычно развертывают под поршневой палец увеличенного размера или заменяют новыми.

Изношенные втулки могут быть восстановлены осадкой в зависимости от конструкции в самом шатуне или после выпрессовки. втулки осаживают при помощи специального приспособления и 20-тонного пресса. При осадке втулки по длине уменьшается ее внутренний диаметр. Для получения точного размера и чистой гладкой поверхности втулки подвергают сначала черновому, а затем чистовому развертыванию или растачиванию. В зависимости от диаметра втулку растачивают при скорости резания 200—500 м/мин, подаче 0,03—0,10 мм/об и глубине резания 0,05—0,45 мм.

 

ЛЕКЦИЯ №3

ТЕМА: «РЕМОНТ УЗЛОВ СИСТЕМЫ СМАЗКИ И ОХЛАЖДЕНИЯ»

Вопросы:

1. Ремонт масляного насоса.

2. Ремонт масляных фильтров.

3. Ремонт узлов системы охлаждения.

4. Ремонт основных узлов, агрегатов и приборов электрооборудования.

1. Ремонт масляного насоса.

Надежность двигателя во многом зависит от исправности узлов системы смазки и качества применяемых масел.

Характерные неисправности системы смазки:

- износ деталей масляного насоса и фильтров,

- нарушение регулировок клапанов,

- потеря герметичности узлов,

- загрязнение системы.

Ремонт масляного насо са. Техническое состояние масляного насоса характеризуется его производительностью при номинальной частоте вращений ведущего валика и рабочем давлении, а также давлением открытия предохранительного клапана.

Определение износов. Перед проверкой и ремонтом масляного насоса его промывают и осматривают снаружи. При осмотре определяют износ валиков, втулок и обнаруживают другие повреждения. Затем насос испытывают на стенде на производительность и давление открытия предохранительного клапана.

Вязкость масла при этом должна быть такой же, как и при испытании насоса после ремонта, и соответствовать вязкости картерного масла у прогретого двигателя.

По результатам испытаний судят о необходимости ремонта насоса.

В случае необходимости разбирают насос, моют его детали и выявляют дефекты и износ.

У корпуса масляного насоса изнашиваются поверхности в местах сопряжения с торцами шестерен и стенки гнезд в местах сопряжения с вершинами зубьев шестерен, места посадки втулки ведущего валика и пальца ведомой шестерни. Кроме того, изнашивается гнездо предохранительного клапана, повреждается резьба, образуются трещины.

При износе корпуса резко снижается производительность насоса.

Износ деталей предохранительного клапана приводит к нарушению его герметичности и снижению давления открытия.

У ведущей и ведомой шестерен насоса изнашиваются торцы и зубья по высоте и толщине. При износе шестерен по торцам и зубьев по высоте уменьшается производительность масляного насоса. На производительность масляного насоса износ зубьев толщине не оказывает существенного влияния. Износ наружной поверхности втулок насоса приводит ослаблению их посадки в корпусе, крышке и ведомой шестерне, а износ внутренней поверхности — к увеличению зазора между втулками, ведущим валиком и пальцем ведомой стерни.

Несвоевременное устранение этой неисправности может быть причиной аварийного износа гнезд корпуса и выхода насоса из строя. Палец ведомой шестерни изнашивается в местах сопряжения корпусом и втулкой ведомой шестерни.

Ведущий валик масляного насоса изнашивается в местах сопряжения со втулками. При несвоевременном устранении этого износа резко увеличивается зазор и быстро изнашиваются корпус и шестерни. У валика изнашиваются также шлицы или шпоночные канавки.

На поверхностях предохранительных клапанов во время эксплуатации появляются риски, задиры, местные износы, вследствие чего нарушается герметичность клапана. Отложение на клапане смолистых веществ приводит к его залеганию.

На клапанах шарикового типа появляются кольцевые выбоины риски. Витки пружины клапанов при длительной работе стираются, что приводит к потере ими упругости, а иногда и к поломке.

Устранение износов. Износ поверхности корпуса, сопрягаемой с крышкой, устраняют шлифовкой или припиливанием с последующим шабрением.

Неплоскостность торцовой поверхности измеряют при помощи иглы и щупа.

Утопание нагнетательных шестерен относительно торцовой верхности корпуса измеряют при помощи линейки и щупа.

Наибольшую трудность представляет восстановление изношенных колодцев корпуса насоса. Колодцы восстанавливают меднением, мелированием, наплавкой меди или латуни, эпоксидными смолами, также расточкой гнезд с последующей запрессовкой вкладышей. Расточка гнезд с последующей постановкой вкладышей наиболее простой способ восстановления корпуса.

.Изношенные отверстия под втулку валика и палец шестерни развертывают и в них запрессовывают втулку увеличенного размера.

Посадочное место шариковых клапанов восстанавливают зенкованием до выведения следов износа с последующей осадкой шарика по гнезду.

Изношенные клапаны плунжерного типа восстанавливают притиркой.

Трещины, обнаруженные в корпусе, заваривают сваркой или запаивают твердыми припоями.

Крышку масляного насоса с изношенной торцовой поверхностью шлифуют или припиливают и затем шабрят. Отверстие под втулку развертывают и в него запрессовывают втулку увеличенного размера.

Втулки с изношенной наружной поверхностью восстанавливают осадкой в корпусе или крышке. При износе внутренней поверхности втулки обычно выбраковывают.

Изношенные пальцы и валики восстанавливают наплавкой с последующими проточкой и шлифованием шеек, а также фрезерованием шлицев.

У маслоприемника насоса может быть оборвана и повреждена сетка, а также нарушена плотность соединения его с корпусом масляного насоса.

Порванные места сетки запаивают. При этом общая площадь запайки не должна превышать 10%.

У привода масляного насоса изнашиваются втулки кронштейнов, валики и соединительные муфты. Изношенные детали восстанавливают обычными способами.

Обкатка и испытание. Отремонтированный масляный насос обкатывают, испытывают и регулируют на специальных стендах.

В процессе обкатки насоса не должно быть постороннего шума, перегрева деталей, просачивания масла в местах соединений и через предохранительный клапан. После обкатки регулируют предохранительный клапан.

По окончании ремонта масляного, насоса проверяют его на производительность при нормальной частоте вращения и определенном противодавлении в соответствии с техническими условиями.

Масляные насосы большинства автомобильных двигателей испытывают только на развиваемое давление.

Ремонт масляных фильтров.

Качество очистки масла от продуктов износа и других примесей зависит от состояния масляных фильтров.

Основные неисправности. Масляные фильтры после разборки промывают и дефектуют.

У фильтров двигателей с центробежной очисткой масла могут быть следующие неисправности: износы шеек ротора и втулок, а также износ и забивание отверстий форсунок (сопл) и защитных сеток на заборных трубках ротора центрифуги (в этом случае ухудшается герметичность ротора и снижается частота вращения его, вплоть до остановки); износ клапанов, резьб, появление трещин па корпусе фильтра, деформация колпаков, повреждение прокладок, что приводит к нарушению регулировок клапанов фильтра и подтеканию масла.

Восстановление деталей. При износе оси ротора центрифуги и втулок ось шлифуют до выведения следов износа. В в корпус ротора запрессовывают втулки ремонтных размеров.

При тугом вращении или заедании корпуса ротора допускается пришабривание втулок.

После запрессовки втулок их обрабатывают одновременно специальной комбинированной разверткой. В случае образования трещин и при обломах корпус и крышку ротора центрифуги выбраковывают.

Сопловые отверстия прочищают медной проволокой и проверяют на пропускную способность при помощи прибора для тарировки жиклеров карбюратора.

Трещины в корпусе фильтра заваривают биметаллическим электродом. Повреждения гнезд клапанов и пружин устраняют так же, как и повреждения предохранительного клапана масляного насоса.

Погнутые стальные колпаки фильтров выправляют, а трещины на горловине запаивают твердыми припоями.

Контроль. После сборки центрифуги на стенде регулируют перепускной клапан, определяют герметичность ротора и частоту его вращения.

После окончательной сборки центрифуги проверяют ее на стенде на герметичность и пропускную способность совместно с масляным насосом нормальной производительности при номинальной частоте вращения и противодавлении.

Ремонт масляных радиаторов. В масляном радиаторе чаще всего забиваются внутренние полости трубок и засоряются маслосборники отложениями, в связи с чем уменьшается пропускная способность радиатора, повышается температура масла. При высокой температуре масла уменьшаются его вязкость и маслянистость, что приводит к повышенному износу деталей, а также старению масла.

Перед ремонтом масляный радиатор вываривают в 5—10-процентном растворе каустической соды в течение 2—3 ч, а затем промывают горячей водой. Отложения в трубках масляного радиатора можно также удалить четыреххлористым углеродом или другим раствором моющего средства. Течь трубок или маслосборников радиатора устраняют пайкой поврежденных мест латунным припоем. Смятую и оборванную ленту трубки выпрямляют и припаивают по всей длине латунным припоем. После ремонта радиатор проверяют на герметичность.


Поделиться с друзьями:

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.063 с.