Длина дуги окружности. Длина окружности — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Длина дуги окружности. Длина окружности

2020-05-07 651
Длина дуги окружности. Длина окружности 0.00 из 5.00 0 оценок
Заказать работу

Длина дуги окружности. Длина окружности

Длина окружности обозначается буквой C и вычисляется по формуле:

C = 2πR,
где Rрадиус окружности.

Вывод формулы, выражающей длину окружности

Путь C и C’ — длины окружностей радиусов R и R’. Впишем в каждую из них правильный n-угольник и обозначим через Pn и P'n их периметры, а через an и a'n их стороны. Используя формулу для вычисления стороны правильного n-угольника an = 2R sin (180°/n) получаем:
Pn = n · an = n · 2R sin (180°/n),
P'n = n · a'n = n · 2R' sin (180°/n).
Следовательно,
Pn / P'n = 2R / 2R'. (1)
Это равенство справедливо при любом значении n. Будем теперь неограниченно увеличивать число n. Так как Pn → C, P'n → C', n → ∞, то предел отношения Pn / P'n равен C / C'. С другой стороны, в силу равенства (1) этот предел равен 2R / 2R'. Таким образом, C / C' = 2R / 2R'. Из этого равенства следует, что C / 2R = C' / 2R', т. е. отношение длины окружности к ее диаметру есть одно и то же число для всех окружностей. Это число принято обозначать греческой буквой π ("пи").
Из равенства C / 2R = π получаем формулу для вычисления длины окружности радиуса R:
С = 2πR.

Длина дуги окружности

Так как длина всей окружности равна 2πR, то длина l дуги в 1° равна 2πR / 360 = πR / 180.
Поэтому длина l дуги окружности с градусной мерой α выражается формулой

l = (πR / 180) · α.

7) Единицы измерения дуг и углов. Градус - единица измерения плоского угла, равная 1/90 части прямого угла, обозначается знаком °. 1° = 60' = 3600", где 1' — минута, 1" — секунда. Прямой угол составляет 90°, развёрнутый 180°. Г. употребляется также для измерения дуг окружности (полная окружность равна 360°).

 

8) Радиан как единица измерения угловых величин.

 

Радиа́н — основная единица измерения плоских углов в современной математике и физике. Радиан определяется как угловая величина дуги, длина которой равна её радиусу. Таким образом, величина полного угла равна 2π радиан.

Поскольку длина дуги окружности пропорциональна её угловой мере и радиусу, длина дуги окружности радиуса R и угловой величины α, измеренной в радианах, равна R α.

Так как величина угла, выраженная в радианах, равна отношению длины дуги окружности к длине её радиуса, радиан — величина безразмерная. Поэтому обозначение радиана (рад) часто опускается.

9) Основные понятия сферической тригонометрии. Сферой. или сферической поверхностью называется геометрическое место точек в пространстве равноудаленных от некоторой точки называемой центром сферы. Радиусом сферы называется отрезок прямой соединяющий центр сферы с любой из ее точек.

Всякое сечение сферы плоскостью является окружностью, которая в сферической тригонометрии часто называется кругом. Сечение проходящее через центр сферы больше всякого другого сечения. Оно называется большим кругом. Радиус большого круга равен радиусу сферы.Точки пересечения оси круга с поверхностью сферы в диаметрально противоположенных направлениях называются полюсами круга. Сферическим радиусом большого круга называется дуга другого большого круга заключенная между любой точкой данного большого круга и его полюсом.

Дуга большого круга называемая в судовождении ортодромией является кратчайшем настоянием между двумя точками на сфере подобно тому, как прямая линия является кратчайшем расстоянием между двумя точками на плоскости.

Сферическим треугольником называется фигура на сфере ограниченная тремя пересекающимися попарно ДБК которые не пересекаются в одной точке. В задачах решаются треугольники стороны которых не превосходят 180гр. Т.е. эти треугольники помещаются на одной половине сферы. Сумма сторон сферического треугольника находится в приделах 0<a+b+c<a+b+c

По форме сферические треугольники разделяют на косоугольныепрямоугольные и четвертные или прямостороннии. Два сферических треугольника, у которого вершины одного являются полюсами сторон другого называются взаимно полярными треугольниками.

Противолежащие стороны и углы двух взаимно полярных треугольников дополняют друг друга до 180.</a+b+c

Сферой называется геометрическое место точек пространства, расположенных на данном расстоянии от данной точки, называемой её центром.

Отрезок, соединяющий центр сферы с какой-либо его точкой, называется радиусом сферы. Отрезок, соединяющий де точки сферы и проходящий, кроме того, через его центр, называется диаметром. Из определения следует, что все радиусы равны и что диаметр равен удвоенному радиусу. Плоскость, проходящая через центр сферы, называется диаметральной плоскостью.

Пусть S-некоторая сфера с центром O радиуса R. Возьмём плоскость a, удалённую от точки O на расстояние, меньшее R. Тогда пересечения плоскости a и сферы S есть окружность. Радиус r этой окружности является катетом прямоугольного треугольника (рис.1), гипотенуза которого – радиус R, а второй катет – перпендикуляр h, опущенный из центра сферы на плоскость. Поэтому в силу теоремы Пифагора r =

Рис 1

Эта формула показывает, что величина r принимает максимальное значение r=R при h=0, то есть является диаметральной плоскостью. В этом случае окружность на сфере и называется большой окружностью. В геометрии на сфере большие окружности играют роль прямых на плоскости. При h>0 мы имеем rмалой окружностью.

Так как через всякие три точки пространства, не лежащие на одной прямой, проходит единственная плоскость, то через всякие две точки сферы, не являющиеся диаметрально противоположными проходит единственная диаметральная плоскость. Поэтому через всякие две точки сферы, не являющиеся диаметрально противоположными, проходит единственная большая окружность (рис.2). Этот факт вполне аналогичен тому, что на плоскости через всякие две точки проходит единственная прямая. Через две диаметрально противоположные точки сферы, напротив, можно провести бесконечное множество больших окружностей (рис.3). Так как всякие две диаметральные плоскости сферы пересекаются по её диаметру, то всякие две большие окружности пересекаются в двух диаметрально противоположных точках сферы (рис.4). Здесь мы наблюдаем отличие сферической геометрии от плоской геометрии, в которой две прямые пересекаются не более чем в одной точке.

Рис 2 Рис 3

Так как плоскость делит пространство на две области, то большая окружность делит сферу на две области (рис.2); эти области называются полусферами, а сама окружность – краем этих полусфер. Далее, так как две пересекающееся плоскости делят пространство на четыре области, то две большие окружности делят сферу на четыре области (рис.4). Наконец, так как три плоскости, пересекающиеся в одной точке, делят пространство на восемь областей, то три большие окружности, не пересекающиеся в одной точке, делят сферу на восемь областей (на рис.5) изображены восемь областей ABC, ABC¢, AB¢C, A¢BC, AB¢C¢, A¢BC¢, A¢B¢C, A¢B¢C¢, на которые делят сферу большие окружности AB, AC и BC, причём точки A¢,B¢,C¢ диаметрально противоположны точкам A,B,C и, следовательно, области ABC и A¢B¢C¢, ABC¢ и A¢B¢C, AB¢C и A¢BC¢, A¢BC и AB¢C¢ попарно диаметрально противоположны).

Рис 4 Рис5

Если первые два из этих свойств аналогичны свойствам прямых на плоскости, которая делится на две области прямой и на четыре области двумя пересекающимися прямыми, то третье из указанных свойств не вполне аналогично соответствующему свойству прямых на плоскости, так как три попарно пересекающиеся прямые, не проходящие все три через одну точку, делят плоскость не на восемь, а на семь частей (рис.6).

Рис 6.

 

10) решение сферических навигационных треугольников расчет расстояния между точками

12)

Гео́ид (буквально — «нечто подобное Земле») — геометрическое тело, отражающее свойства потенциала силы тяжести на Земле (вблизи земной поверхности). Геоид определяется как эквипотенциальная поверхность земного поля тяжести (уровенная поверхность), приблизительно совпадающая со средним уровнем вод Мирового океана в невозмущённом состоянии и условно продолженная под материками. Отличие реального среднего уровня моря от геоида может достигать 1 м.

По определению эквипотенциальной поверхности, поверхность геоида везде перпендикулярна отвесной линии.

 

Земн о й сфер о ид - геометрическая фигура, близкая к шару, слабо сплюснутому в направлении полюсов, и наилучшим образом представляющая фигуру геоида, т. е. фигуру Земли в целом. В простейшем случае сфероид совпадает с эллипсоидом вращения и является фигурой равновесия однородной жидкой массы, все частицы которой взаимно притягиваются по закону всемирного тяготения и которая вращается с постоянной угловой скоростью около неизменной оси. Хотя Земля не является однородной жидкой массой, всё же З. с. мало отличается от соответствующего эллипсоида вращения. Отклонение поверхности З. с. от поверхности земного эллипсоида наибольшее под широтой 45° — около 3—4 м. Вследствие этого в геодезии фигуру геоида обычно заменяют эллипсоидом вращения с соответствующими размерами полуосей и определённым положением в теле Земли и все геодезические задачи решают на поверхности такого эллипсоида.

Референц-эллипсоид (от лат. referens – сообщающий, вспомогательный) – земной эллипсоид, с определёнными размерами и положением в теле Земли, служащий вспомогательной математической поверхностью, к которой приводят результаты всех геодезических измерений на земной поверхности и на которую тем самым проектируются пункты опорной геодезической сети.

Референц-эллипсоид наилучшим образом согласуюется с поверхностью геоида на ограниченной части его поверхности.

Требования к референц-эллипсоиду:

1)Ось вращения должна быть параллельна оси вращения Земли
2)Плоскость экватора должна быть параллельна плоскости Земного экватора

 

14) Масштабы.

Числовой масштаб — дробь, числитель которой — единица, а знаменатель — число, показывающее, скольким единицам длины на местности равна единица длины на карте. Например, дробь 1/200000 означает, что одной единице длины на карте соответствует 200 000 таких же единиц длины на местности (1 см на карте равен 200 000 см на местности и т. п.).

Линейный масштаб указывает, какое число более крупных единиц расстояния на местности содержится в одной более мелкой единице на карте (например, 5 миль в 1 см).

Для перехода от числового масштаба к линейному знаменатель числового масштаба делят на длину морской мили, выраженную в тех единицах, к которым приводится линейный масштаб. Например, числовой масштаб 1/200000, тогда линейный масштаб будет 200000/185200 = 1,03 мили в 1 см.

Для перехода от линейного масштаба к числовому линейную длину изображения одной мили на карте делят на длину морской мили в тех же единицах, в которых длина мили дана на карте. Например, линейный масштаб 5 миль в 1 см, тогда числовой масштаб 1/51852100 = 1/926000.

Предельная точность масштаба различна у карт с различными масштабами. Так, например, если имеется карта с масштабом 1:200 000, т.е. 1 мм на карте соответствует. 200 м на местности, тогда предельная точность масштаба будет 0,2X200 — 40 м. Морские карты печатают на листах стандартных размеров, поэтому если необходимо изобразить на карте определенный район, то масштаб определяют в соответствии с предельными размерами листа меркаторской карты.

Произвольные проекции

В произвольных проекциях имеются искажения и углов, и площадей, но в значительно меньшей степени, чем в равновеликих и равноугольных проекциях, поэтому они наиболее употребляемые.

Частным случаем произвольных проекций являются равнопромежуточные проекции, в которых сохраняются расстояния по некоторым выбранным направлениям: например, прямая азимутальная проекция, в которой правильно изображаются расстояния от полюса.

 

Цилиндрические проекции

В прямых цилиндрических проекциях параллели и меридианы изображаются двумя семействами параллельных прямых линий, перпендикулярных друг другу. Таким образом задается прямоугольная сетка цилиндрических проекций

Промежутки между параллелями пропорциональны разностям долгот. Промежутки между меридианами определяются принятым характером изображения или способом проектирования точек земной поверхности на боковую поверхность цилиндра. Из определения проекций следует, что их сетка меридианов и параллелей ортогональна. Цилиндрические проекции можно рассматривать как частный случай конических, когда вершина конуса в бесконечности.

По свойствам изображения проекции могут быть равноугольными, равновеликими и произвольными. Применяются прямые, косые и поперечные цилиндрические проекции в зависимости от расположения изображаемой области. В косых и поперечных проекциях меридианы и параллели изображаются различными кривыми, но средний меридиан проекции, на котором располагается полюс косой системы, всегда прямой.

Существуют разные способы образования цилиндрических проекций. Наглядным представляется проектирование земной поверхности на боковую поверхность цилиндра, которая затем развертывается на плоскости. Цилиндр может быть касательным к земному шару или секущим его. В первом случае длины сохраняются по экватору, во втором — по двум стандартным параллелям, симметричным относительно экватора.

Цилиндрические проекции применяются при составлении карт мелких и крупных масштабов — от общегеографических до специальных. Так, например, аэронавигационные маршрутные полетные карты чаще всего составляются в косых и поперечных цилиндрических равноугольных проекциях (на шаре).

В прямых цилиндрических проекциях одинаково изображаются одни и те же участки земной поверхности вдоль линии разреза — по восточной и западной рамкам карты (дублируемые участки карты) и обеспечивается удобство чтения по широтным поясам (например, на картах растительности, осадков) или по меридиональным зонам (например, на картах часовых поясов).

Косые цилиндрические проекции при широте полюса косой системы, близкой к полярным широтам, имеют географическую сетку, дающую представление о сферичности земного шара. С уменьшением широты полюса кривизна параллелей увеличивается, а их протяжение уменьшается, поэтому уменьшаются и искажения (эффект сферичности). В прямых проекциях полюс показывается прямой линией, по длине, равной экватору, но в некоторых из них (проекции Меркатора, Уэтча) полюс изобразить невозможно. Полюс представляется точкой в косых и поперечных проекциях. При ширине полосы до 4,5° можно использовать касательный цилиндр, при увеличении ширины полосы следует применять секущий цилиндр, то есть вводить редукционный коэффициент

Конические проекции

По характеру искажений конические проекции могут быть различными. Наибольшее распространение получили равноугольные и равнопромежуточные проекции. Образование конических проекций можно представить как проектирование земной поверхности на боковую поверхность конуса, определенным образом ориентированного относительно земного шара (эллипсоида).

В прямых конических проекциях оси земного шара и конуса совпадают. При этом конус берется или касательный, или секущий.

После проектирования боковая поверхность конуса разрезается по одной из образующих и развертывается в плоскость. При проектировании по методу линейной перспективы получаются перспективные конические проекции, обладающие только промежуточными свойствами по характеру искажений.

В зависимости от размеров изображаемой территории в конических проекциях принимаются одна или две параллели, вдоль которых сохраняются длины без искажений. Одна параллель (касательная) принимается при небольшом протяжении по широте; две параллели (секущие) — при большом протяжении для уменьшения уклонений масштабов от единицы. В литературе их называют стандартными параллелями.

Азимутальные проекции

В азимутальных проекциях параллели изображаются концентрическими окружностями, а меридианы — пучком прямых, исходящих из центра

Углы между меридианами проекции равны соответствующим разностям долгот. Промежутки между параллелями определяются принятым характером изображения (равноугольным или другим) или способом проектирования точек земной поверхности на картинную плоскость. Нормальная сетка азимутальных проекций ортогональна. Их можно рассматривать как частный случай конических проекций.

Применяются прямые, косые и поперечные азимутальные проекции, что определяется широтой центральной точки проекции, выбор которой зависит от расположения территории. Меридианы и параллели в косых и поперечных проекциях изображаются кривыми линиями, за исключением среднего меридиана, на котором находится центральная точка проекции. В поперечных проекциях прямой изображается также экватор: он является второй осью симметрии.

В зависимости от искажений, азимутальные проекции подразделяются на равноугольные, равновеликие и с промежуточными свойствами. В проекции масштаб длин может сохраняться в точке или вдоль одной из параллелей (вдоль альмукантарата). В первом случае предполагается касательная картинная плоскость, во втором — секущая. В прямых проекциях формулы даются для поверхности эллипсоида или шара (в зависимости от масштаба карт), в косых и поперечных — только для поверхности шара.

Азимутальную равновеликую проекцию называют также стереографической. Она получается проведением лучей из некоторой фиксированной точки поверхности Земли на плоскость, касательную к поверхности Земли в противолежащей точке.

Особый вид азимутальной проекции — гномоническая. Она получается проведением лучей из центра Земли к некоторой касательной к поверхности Земли плоскости. Гномоническая проекция не сохраняет ни площадей, ни углов, но зато на ней кратчайший путь между любыми двумя точками (то есть дуга большого круга) всегда изображается прямой линией; соответственно меридианы и экватор на ней изображаются прямыми линиями.

Псевдоконические проекции

В псевдоконических проекциях параллели изображаются дугами концентрических окружностей, один из меридианов, называемый средним — прямой линией, а остальные — кривыми, симметричными относительно среднего.

Примером псевдоконической проекции может служит равновеликая псевдоконическая проекция Бонна.

Поликонические проекции

В поликонических проекциях экватор изображается прямой, а остальные параллели изображаются дугами эксцентрических окружностей. Меридианы изображаются кривыми, симметричными относительно центрального прямого меридиана, перпендикулярного экватору.

Кроме вышеперечисленных встречаются и другие проекции, не относящиеся к указанным видам.

17) локсодромия — кривая на поверхности вращения, пересекающая все меридианы под постоянным углом, называемым локсодромическим путевым углом.

Если передвигаться с фиксированным путевым углом по Земле, которую условно принять за сферу или эллипсоид, то траектория движения объекта и будет локсодромией. Локсодрома не является кратчайшим путём между двумя пунктами (исключение — меридианы и экватор). Тем не менее, в старину суда и путешественники нередко двигались по локсодромам, так как идти под постоянным углом к Полярной звезде проще и удобнее. С изобретением компаса мореплаватели перешли на движение по «магнитным локсодромам», то есть по линиям с постоянным углом к магнитному северу, что дало возможность продолжать движение и в облачную погоду. Но как только были выяснены магнитные склонения во всех местах Земли, люди вновь перешли на обычные локсодромы. Даже в XX веке локсодромия использовалась при расчёте требуемого курса при прокладке маршрута самолётов и морских судов. Со временем, когда появились приборы с достаточной вычислительной мощностью для вычисления текущего требуемого путевого угла, начали активно применять ортодромию (кратчайший путь), особенно для дальних маршрутов самолётов.

Ортодромия — кратчайшая линия между двумя точками на поверхности вращения. В картографии и навигации — название геодезической линии кратчайшего расстояния между двумя точками на поверхности земного шара, наименьший из отрезков дуги большого круга, проходящей через эти точки. В отличие от локсодромии ортодромия пересекает меридианы под разными углами. В судо- и самолётовождении, где Земля принимается за шар, ортодромия представляет собой дугу большого круга.

Экватор и меридианы являются частными случаями ортодромии. Через две точки на земной поверхности, расположенные не на противоположных концах одного диаметра Земли, можно провести только одну ортодромию.

В большинстве картографических проекций ортодромии изображаются кривыми линиями (за исключением, быть может, меридианов и экватора). Это неудобно для прокладки кратчайших маршрутов. В гномонической проекции все ортодромии изображены прямыми линиями.

Параллели (за исключением экватора) не являются ортодромиями.

локсодромия,- линия на поверхности вращения, пересекающая все меридианы под

постоянным углом а. Если а - острый или тупой угол, то Л. образует бесконечное число витков вокруг полюса, все приближаясь к нему. Для поверхности вращения, первая квадратичная форма к-рой записана в виде

уравнение Л.:

Для сферы с первой квадратичной формой

уравнение Л.:

ЭЛЕМЕНТАРНАЯ ТЕОРИЯ МЕРКАТОРСКОЙ ПРОЕКЦИИ. ПОНЯТИЕ О ПЛАНАХ

Картографическая сетка меркаторской проекции строится следующим образом. Условный глобус заключается в цилиндр, касательный глобусу по экватору (рис. 2). Меридианы, нанесен­ные на глобус, распрямляются до тех пор, пока они не коснутся внутренней поверхности цилиндра. При этом меридианы образу­ют на поверхности цилиндра ряд прямых линий, параллельных между собой. Расстояние между этими.линиями равно расстоя­ниям между меридианами на экваторе глобуса. При распрямлении меридианов параллели растягиваются и становятся равными по длине экватору. На внутренней поверхности цилиндра они обра зуют ряд окружностей



Рис2

Рис 3


. Удлинение параллелей будет тем значи­тельнее, чем ближе они к полюсу.

Найдем математическую закономерность, которая определяет характер растяжения каждой параллели. Обозначим (рис. 3) радиус параллели АВ, лежащей в широте φ, через г, а радиус Земли — через R. В прямоугольном треугольнике ВОС<СВО =

Умножив левую и правую части равенства на 2л, полу­чим в левой части длину экватора, а в правой — длину парал­лели, умноженную на секанс широты данной параллели,

(*)

Из выражения (*) можно сделать заключение, что любая параллель, удлиняясь до окружности экватора, растягивается пропорционально секансу широты.

Разрежем цилиндр по образующей и развернем его на плос­кость. Полученная картографическая сетка удовлетво­ряет первому требованию к морской карте: так как все меридиа­ны параллельны, то локсодромия изобразится на ней прямой линией.

Однако проекция не является равноугольной, поскольку участки земной поверхности при проектировании будут вытяги­ваться на ней вдоль параллелей пропорционально секансу φ и, следовательно, не будет сохраняться подобие фигур на местности и на карте, Так, небольшой остров К имеющий круглую форму,изобразится в виде эллипса, вытянутого в широтном направле­нии (см. рис. 4, а).

Чтобы сделать проекцию равноугольной, необходимо теперь меридианы в каждой точке растянуть так же, как в этой точке растянулась параллель, т. е. пропорционально секансу широты точки. После этого масштаб на каждом небольшом участке карты станет одинаковым как по параллели, так и по меридиану (рис. 4, б). Изображение круглого острова на картографической сетке сохранит свою круглую форму, т. е. проекция будет обладать свойством равноугольное™.

Построенная таким методом картографическая проекция, удовлетворяющая обоим требованиям к морской карте, носит название меркаторской.

Масштаб полученной проекции меняется при перемене широ­ты, оставаясь постоянным по направлению параллелей. Поэтому при составлении меркаторской карты главный масштаб указы­вается по одной из параллелей. За главную параллель может приниматься средняя параллель участка земной поверхности, охватываемого данной картой. Однако при построении карт срав­нительно мелкого масштаба за главную, как правило, принима­ется стандартная параллель данного моря или широтного пояса, даже если она не проходит через карту.


 


Рис. 4. Построение меркаторской проекции: с — сетка из меридианов и параллелей; б — меркаторска я проекция

Чтобы было удобно измерять расстояния, а также разности широт, боковые рамки меркаторской карты разбивают на участ­ки в 1', т. е. на морские мили. Так как при построении карты меридианы вытягивались не равномерно, а пропорционально се­кансу широты в каждой точке, то морские мили будут изобра­жаться разными по длине участками, увеличивающимися по мере удаления от экватора.


Изображение 1 морской мили на меркаторской карте в дан­ной широте называется меркаторскрй милей.

На экваторе, т. е. в широте 0°, меркаторская миля равна 1 экваториальной миле, в широте 60° — 2 экваториальным Милям (sec 60°.= 2), а в широте 80° — 5,8 экваториальным милям (sec 80° = 5,8). При изменении расстояния в какой-либо широте следует пользоваться меркаторскими милями, взятыми с боковой рамки карты в той же широте.

Способы из курсовой работы.

Графоаналитический метод.

Расчет скп по отклонениям.

– формула о т к л о н е н и й результатов измерений U от их среднего арифметического значения :

 

, (1.2.3)

 

где i – порядковый номер измерения, при этом i = 1, 2,..., n (n ³ 9);

Длина дуги окружности. Длина окружности

Длина окружности обозначается буквой C и вычисляется по формуле:

C = 2πR,
где Rрадиус окружности.


Поделиться с друзьями:

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.07 с.