Глава 16 Магнитные свойства вещества — КиберПедия 

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Глава 16 Магнитные свойства вещества

2020-05-07 140
Глава 16 Магнитные свойства вещества 0.00 из 5.00 0 оценок
Заказать работу

Глава 16 Магнитные свойства вещества

Диа- и парамагнетизм

Всякое вещество является магнетиком, т. е. оно способно под действием магнитно­го поля приобретать магнитный момент (намагничиваться). Для понимания меха­низма этого явления необходимо рассмот­реть действие магнитного поля на движу­щиеся в атоме электроны.

Ради простоты предположим, что элек­трон в атоме движется по круговой орби­те. Если орбита электрона ориентирована относительно вектора В произвольным об­разом, составляя с ним угол а (рис. 188), то можно доказать, что она приходит в та­кое движение вокруг В, при котором век­тор магнитного момента р m, сохраняя по­стоянным угол а, вращается вокруг на-

правления В с некоторой угловой скоро­стью. Такое движение в механике на­зывается прецессией. Прецессию вокруг вертикальной оси, проходящей через точку опоры, совершает, например, диск волчка при замедлении движения.

Таким образом, электронные орбиты атома под действием внешнего магнитного поля совершают прецессионное движе­ние, которое эквивалентно круговому то­ку. Так как этот микроток индуцирован внешним магнитным полем, то, согласно правилу Ленца, у атома появляется со­ставляющая магнитного поля, направлен­ная противоположно внешнему полю. На­веденные составляющие магнитных полей атомов (молекул) складываются и обра­зуют собственное магнитное поле вещест­ва, ослабляющее внешнее магнитное по­ле. Этот эффект получил название диа­магнитного эффекта, а вещества, на­магничивающиеся во внешнем магнитном поле против направления поля, называют­ся диамагнетиками.

В отсутствие внешнего магнитного по­ля диамагнетик немагнитен, поскольку в данном случае магнитные моменты элек­тронов взаимно компенсируются, и сум­марный магнитный момент атома (он ра­вен векторной сумме магнитных моментов (орбитальных и спиновых) составляющих атом электронов) равен нулю. К диамагнетикам относятся многие металлы (на­пример, Bi, Ag, Au, Cu), большинство органических соединений, смолы, углерод и т. д.

Так как диамагнитный эффект обус­ловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойствен всем веществам. Однако наряду с диамагнитными ве­ществами существуют и парамагнитные — вещества, намагничивающиеся во внеш­нем магнитном поле по направлению поля.

У парамагнитных веществ при отсутст­вии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и атомы (молекулы) парамагнети­ков всегда обладают магнитным момен­том. Однако вследствие теплового движе­ния молекул их магнитные моменты ори­ентированы беспорядочно, поэтому пара-

 

 

206

магнитные вещества магнитными свой­ствами не обладают. При внесении пара­магнетика во внешнее магнитное поле устанавливается преимущественная ори­ентация магнитных моментов атомов по полю (полной ориентации препятствует тепловое движение атомов). Таким обра­зом, парамагнетик намагничивается, со­здавая собственное магнитное поле, со­впадающее по направлению с внешним полем и усиливающее его. Этот эффект называется парамагнитным. При ослабле­нии внешнего магнитного поля до нуля ориентация магнитных моментов вследст­вие теплового движения нарушается и па­рамагнетик размагничивается. К парамаг­нетикам относятся редкоземельные эле­менты, Pt, Al и т. д. Диамагнитный эффект наблюдается и в парамагнетиках, но он значительно слабее парамагнитного и по­этому остается незаметным.

Из рассмотрения явления парамагне­тизма следует, что его объяснение совпа­дает с объяснением ориентационной (дипольной) поляризации диэлектриков с по­лярными молекулами (см. §87), только электрический момент атомов в случае поляризации надо заменить магнитным моментом атомов в случае намагничения.

Подводя итог качественному рассмот­рению диа- и парамагнетизма, еще раз отметим, что атомы всех веществ являют­ся носителями диамагнитных свойств. Ес­ли магнитный момент атомов велик, то парамагнитные свойства преобладают над диамагнитными и вещество является па­рамагнетиком; если магнитный момент атомов мал, то преобладают диамагнит­ные свойства и вещество является диамагнетиком.

Природа ферромагнетизма

Рассматривая магнитные свойства ферро­магнетиков, мы не вскрывали физическую природу этого явления. Описательная тео­рия ферромагнетизма была разработана французским физиком П. Вейссом (1865—1940). Последовательная количе­ственная теория на основе квантовой ме­ханики развита советским физиком Я. И. Френкелем и немецким физиком В. Гейзенбергом (1901 — 1976).

Согласно представлениям Вейсса, ферромагнетики при температурах ниже точки Кюри обладают спонтанной намаг­ниченностью независимо от наличия внеш­него намагничивающего поля. Спонтанное намагничение, однако, находится в кажу­щемся противоречии с тем, что многие ферромагнитные материалы даже при тем­пературах ниже точки Кюри не намагниче­ны. Для устранения этого противоречия Вейсс ввел гипотезу, согласно которой ферромагнетик ниже точки Кюри разбива­ется на большое число малых макроскопи­ческих областей — доменов, самопроиз­вольно намагниченных до насыщения.

При отсутствии внешнего магнитного поля магнитные моменты отдельных до­менов ориентированы хаотически и ком­пенсируют друг друга, поэтому результи­рующий магнитный момент ферромагнети­ка равен нулю и ферромагнетик не намагничен. Внешнее магнитное поле ори­ентирует по полю магнитные моменты не отдельных атомов, как это имеет место в случае парамагнетиков, а целых об­ластей спонтанной намагниченности. По­этому с ростом Н намагниченность

J (см. рис. 192) и магнитная индукции В (см. рис. 193) уже в довольно слабых полях растут очень быстро. Этим объясня­ется также увеличение mферромагнетиков до максимального значения в слабых по­лях (см. рис. 194). Эксперименты показа­ли, что зависимость В от Я не является такой плавной, как показано на рис. 193, а имеет ступенчатый вид. Это свидетель­ствует о том, что внутри ферромагнетика домены поворачиваются по полю скачком.

При ослаблении внешнего магнитного поля до нуля ферромагнетики сохраняют остаточное намагничение, так как тепло­вое движение не в состоянии быстро дезо­риентировать магнитные моменты столь крупных образований, какими являются домены. Поэтому и наблюдается явление магнитного гистерезиса (рис.195). Для того чтобы ферромагнетик размагнитить, необходимо приложить коэрцитивную си­лу; размагничиванию способствуют также встряхивание и нагревание ферромагнети­ка. Точка Кюри оказывается той темпера­турой, выше которой происходит разруше­ние доменной структуры.

Существование доменов в ферромагне­тиках доказано экспериментально. Пря­мым экспериментальным методом их на­блюдения является метод порошковых фи­гур. На тщательно отполированную по­верхность ферромагнетика наносится во­дная суспензия мелкого ферромагнитного порошка (например, магнетита). Частицы оседают преимущественно в местах мак­симальной неоднородности магнитного по­ля, т. е. на границах между доменами. Поэтому осевший порошок очерчивает границы доменов и подобную картину мож­но сфотографировать под микроскопом. Линейные размеры доменов оказались рав­ными 10-4—10-2 см.

Дальнейшее развитие теории ферро­магнетизма Френкелем и Гейзенбергом, а также ряд экспериментальных фактов позволили выяснить природу элементар­ных носителей ферромагнетизма. В насто­ящее время установлено, что магнитные свойства ферромагнетиков определяются спиновыми магнитными моментами элек­тронов (прямым экспериментальным ука­занием этого служит опыт Эйнштейна и де

 

 

212

Гааза, см. § 131). Установлено также, что ферромагнитными свойствами могут обла­дать только кристаллические вещества, в атомах которых имеются недостроенные внутренние электронные оболочки с не­скомпенсированными спинами. В подо­бных кристаллах могут возникать силы, которые вынуждают спиновые магнитные моменты электронов ориентироваться па­раллельно друг другу, что и приводит к возникновению областей спонтанного намагничения. Эти силы, называемые об­менными силами, имеют квантовую при­роду — они обусловлены волновыми свой­ствами электронов.

Так как ферромагнетизм наблюдается только в кристаллах, а они обладают ани­зотропией (см. §70), то в монокристаллах ферромагнетиков должна иметь место анизотропия магнитных свойств (их за­висимость от направления в кристалле). Действительно, опыт показывает, что при одних направлениях в кристалле его на­магниченность при данном значении на­пряженности магнитного поля наиболь­шая (направление легчайшего намагниче­ния), в других — наименьшая (направле­ние трудного намагничения). Из рассмот­рения магнитных свойств ферромагнети­ков следует, что они похожи на сегнето­электрики (см. §91).

Существуют вещества, в которых об­менные силы вызывают антипараллельную ориентацию спиновых магнитных моментов электронов. Такие тела называются антиферромагнетиками. Их существова­ние теоретически было предсказано Л. Д. Ландау. Антиферромагнетиками являются некоторые соединения марганца (МnО, MnF2), железа (FeO, FeCl2) и мно­гих других элементов. Для них также су­ществует антиферромагнитная точка Кю­ри (точка Нееля), при которой магнит­ное упорядочение спиновых магнитных моментов нарушается и антиферромагне­тик превращается в парамагнетик, пре­терпевая фазовый переход II рода (см. §75).

В последнее время большое значение приобрели полупроводниковые ферромаг­нетики — ферриты, химические соедине­ния типа МеО•Fе2О3, где Me — ион двух­валентного металла (Mn, Co, Ni, Cu, Mg, Zn, Cd, Fe). Они отличаются заметными ферромагнитными свойствами и большим удельным электрическим сопротивлением (в миллиарды раз большим, чем. у ме­таллов). Ферриты применяются для изго­товления постоянных магнитов, ферритовых антенн, сердечников радиочастотных контуров, элементов оперативной памяти в вычислительной технике, для покрытия пленок в магнитофонах и видеомагнитофо­нах и т. д.

Контрольные вопросы

• Почему орбитальные магнитный и механический моменты электрона в атоме противоположно направлены?

• Что называют гиромагнитным отношением?

• Из каких магнитных моментов складывается магнитный момент атома?

• Что такое диамагнетики? парамагнетики? В чем различие их магнитных свойств?

• Что такое намагниченность? Какая величина может служить ее аналогом в электростатике?

• Запишите и объясните соотношения между магнитными проницаемостью и восприимчивостью для парамагнетика; для диамагнетика.

• Выведите связь между векторами магнитной индукции, напряженности магнитного поля и на­магниченности.

•Объясните физический смысл циркуляции по произвольному замкнутому контуру векторов: 1) В; 2) Н; 3) J.

• Выведите и прокомментируйте условия для векторов В и Н на границе раздела двух магнетиков.

• Объясните петлю гистерезиса ферромагнетика. Что такое магнитострикция?

 

213

• Какие ферромагнетики являются магнитомягкими? магнитожесткими?

• Каков механизм намагничения ферромагнетиков?

• Какую температуру для ферромагнетика называют точкой Кюри?

Задачи

16.1. Напряженность однородного магнитного поля в меди равна 10 А/м. Определить магнитную индукцию поля, создаваемого молекулярными токами, если диамагнитная восприимчивость меди |c|=8,8•10-8. [1,11 пТл]

16.2. По круговому контуру радиусом 50 см, погруженному в жидкий кислород, течет ток 1,5 А. Оп­ределить намагниченность в центре этого контура, если магнитная восприимчивость жидкого кислорода 3,4•10-3. [5,1 мА/м]

16.3. По обмотке соленоида индуктивностью 1 мГн, находящегося в диамагнитной среде, течет ток 2 А. Соленоид имеет длину 20 см, площадь поперечного сечения 10 см2 и 400 витков. Опреде­лить внутри соленоида: 1) магнитную индукцию; 2) намагниченность. [1)5 мТл; 2) 20 А/м]

!6.4. Алюминиевый шарик радиусом 0,5 см помещен в однородное магнитное поле (В0=0,1 Тл). Определить магнитный момент, приобретенный шариком, если магнитная восприимчивость алюминия 2,1•10-5. [8,75 мкА•м2]

 

 

* Л. Неель (род. 1904) — французский физик.

 

 

* В. И. де Гааз (1878—1960) — нидерлан­дский физик.

Глава 16 Магнитные свойства вещества


Поделиться с друзьями:

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.035 с.