Очистка сточных вод производства полисульфидных каучуков — КиберПедия 

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Очистка сточных вод производства полисульфидных каучуков

2020-04-01 116
Очистка сточных вод производства полисульфидных каучуков 0.00 из 5.00 0 оценок
Заказать работу

 

При производстве полисульфидных каучуков (тиоколов) образуются сточные воды двух видов: кислотные и щелочные. Кислотный сток образуется на стадии отмывки скоагулированного полимера, щелочной — на стадии отмывки нерасщепленной дисперсии. Наиболее загрязнены щелочные сточные воды, характеризующиеся большим значением ХПК. В их состав входят органические и неорганические соединения серы различной валентности и соли металлов, поэтому без предварительной очистки они не могут быть поданы на биологические очистные сооружения из-за угрозы гибели биоценоза микроорганизмов активного ила.

Известно несколько методов локальной очистки сточных вод, образующихся в процессе синтеза тиоколов. Первоначально очистку осуществляли путем смешения кислых и щелочных стоков с последующей обработкой серной кислотой при одновременном нагреве до 100 °С. При этом осадок, содержащий серу и низкомолекулярные олигомеры тиокола, отделялся фильтрацией, а фильтрат направлялся на биологическую очистку. Недостатком данного способа является то, что образующийся осадок налипает на стенки оборудования, забивает трубопроводы. Кроме того, кислая среда рН =1 ¸ 3) способствует интенсивной коррозии аппаратуры, от которой не защищает покрытие стенок свинцом, фторпластиком и другими материалами.

В дальнейшем нашел применение способ, когда щелочной сток обрабатывали раствором хлористого магния (3 – 5 г/л), а затем смешивали с кислотным стоком. В щелочной среде МgС12 гидролизовался до Мg(ОН)2. Последний служил коагулянтом и сорбентом низкомолекулярных олигомеров тиокола. Образующаяся суспензия легко выпадала в осадок, в котором содержалось до 60 % тиокола. После 16-часового уплотнения осадок возвращался в основной технологический процесс. С целью повышения скорости отстаивания дисперсии тиокола в сток предлагалось вводить 0,25 – 0,5 г/л карбоната или бикарбоната натрия. Вторая стадия очистки предусматривала обработку серной кислотой осветленной части стоков при комнатной температуре, в результате чего происходило разложение сернистых соединений переменной валентности с образованием элементарной серы, политионатов и отходящих газов (Н2S и SО2).

Другой способ очистки сточных вод заключается в использовании в качестве антиагломератора 4 %-ного раствора глины в сочетании с Аl2(SО4)3, FеСl3 и СаСl2 с целью облегчения отделения осадка. Стоки очищались только от олигомеров тиокола.

Авторы статьи [6] исследовали возможность использования железосодержащих коагулянтов для очистки щелочных стоков производства полисульфидных каучуков.

В качестве коагулянтов использовали соединения железа (Ш) – FеСl3 • 6Н2О, Fе2(SО4)3 • 9Н2О — и железоаммонийные квасцы – NН4Fе(SО4)2 • 12Н2О. Очистке подвергался промышленный сток следующего состава, г/л: 6,57 сульфатов; 4,114 сульфидов; 0,148 взвешенных веществ; 29,81 сухого и прокаленного остатка. Он имел темно-вишневый цвет, цветность 19 %; оптическую плотность 0,71; рН = 11,56; ХПК = 24,88 гО/л.

Типовой эксперимент, проведенный авторами статью, заключался в следующем. К 200 мл исследуемого стока в мерных цилиндрах добавляли 30 %-ные растворы коагулянтов в дозировке 1; 3; 5; 10; 15; 20; 25 и 30 г/л в расчете на сухое вещество. При введении растворов коагулянтов в содержимое цилиндров наблюдалось мгновенное образование мелкодисперсной взвеси черного цвета во всем объеме жидкости, которая не осаждалась в течение долгого времени.

Черная окраска обусловлена образованием сульфида железа. Последний образуется в результате нескольких последовательных реакций: ступенчатого гидролиза соединений железа (Ш) до Fе(ОН)3 и его взаимодействия с сульфидами, содержащимися в стоке:


 

2Fе(ОН)3 + 3S2- ® 2FеS + S + 6ОН-

 

Одновременно с образованием мелкодисперсной фазы зафиксировано выпадение на дно сосудов крупнодисперсного осадка, объем которого изменялся с течением времени. Первоначально, в течение 10 – 30 мин в зависимости от концентрации коагулянтов, происходило увеличение объема данного осадка, а затем за счет постепенного уплотнения наблюдалось его уменьшение (рис. 2). Наибольший объем осадка образовывался при добавлении в сточную воду железосодержащих коагулянтов: 0,061 моль/л FеСl3 и 0,025 моль/л Fе2(SО4)3 (табл. 3 и 4).

Аналогичная картина наблюдается при использовании в качестве коагулянта NН4Fе(SО4)2.

Максимальное количество и объем образовавшегося осадка соответствует концентрации квасцов 0,056 моль/л (табл. 5).

Сравнительный анализ кривых на рис. 2, а также данных, приведенных в табл. 3 – 5, показывает, что максимальному объему осадка в цилиндре соответствует и наибольшая его масса после фильтрации.

 

Таблица 3. Зависимость осаждения крупнодисперсного осадка от концентрации раствора FeCl3

Показатель

Концентрация коагулянта, (г/л)/(моль/л)

1/0,006 3/0,018 5/0,031 10/0,061 15/0,092 20/0,123 25/0,154 30/0,185
Цветность, % 24,3 20,0 18,5 31,2 34,9 44,1 52,1 82,0
Оптическая плотность 0,61 0,69 0,72 0,50 0,46 0,36 0,28 0,09
Содежание взвешенных веществ, г/л 2,17 1,38 1,32 0,11 0,06 0,07 0,12 0,23
Содержание сухого и прокаленного остатка, г/л 56,74 54,1 47,43 43,36 47,68 48,57 52,23 61,71
Содержание осадка, г/л 6,16 10,1 15,92 20,72 20,61 17,82 14,0 13,83

 

Таблица 4. Зависимость осаждения крупнодисперсного осадка от концентрации раствора Fe2(SO4)3

Показатель

Концентрация коагулянта, (г/л)/(моль/л)

1/0,002 3/0,007 5/0,012 10/0,025 15/0,037 20/0,050 25/0,062 30/0,075
Цветность, % 19,0 68,0 34,0 48,0 55,0 82,0 95,0 93,0
Оптическая плотность 0,71 0,17 0,47 0,32 0,26 0,09 0,02 0,04
Содежание взвешенных веществ, г/л 0,11 0,11 0,21 0,20 0,24 0,21 0,2 0,24
Содержание сухого и прокаленного остатка, г/л 46,98 43,35 52,73 56,62 53,3 56,2 63,11 67,38
Содержание осадка, г/л 5,46 9,66 15,94 15,95 11,42 11,12 12,83 9,51

 

Таблица 5. Зависимость осаждения крупнодисперсного осадка от концентрации раствора NH4Fe(SO4)2

Показатель

Концентрация коагулянта, (г/л)/(моль/л)

1/0,004 5/0,019 15/0,056 25/0,094 30/0,113
Цветность, % 27,0 20,0 34,50 30,0 88,0
Оптическая плотность 0,57 0,70 0,46 0,52 0,05
Содежание взвешенных веществ, г/л 0,11 0,10 0,32 0,59 0,21
Содержание сухого и прокаленного остатка, г/л 50,0 42,33 54,94 50,71 69,70
Содержание осадка, г/л 6,98 9,74 17,64 17,25 17,01

 

После 20 ч содержимое цилиндров подвергалось фильтрации: осадок высушивался до постоянной массы и взвешивался.

Анализ кривых на рис. 3 выявил некоторые закономерности: с увеличением дозы коагулянтов рН и содержание сульфидов уменышаются, причем наименьшее количество S2- достигается при использовании FeСl3. Кривая зависимости ХПК от концентрации коагулянта во всех случаях имеет П-образный вид. При этом минимальное значение ХПК приходится на концентрацию 10—15 г/л.

Наименьшее значение ХПК, равное 5,111 гО/л, соответствует концентрации FеСl3 • 6Н2О 0,061 моль/л (10 г/л). При этой же дозировке хлорида железа выделяется и наибольшее количество осадка (20,72 г/л).

Характер изменения количества сухого и прокаленного остатка и осадка от коагулянтов сложен. Но можно отметить, что минимальное количество сухого и прокаленного остатка наблюдается при максимальном количестве выделенного осадка, что закономерно.


 

При использовании железосодержащих коагулянтов после образования и фильтрации основной массы осадка наблюдается постоянное выпадение

 

небольшого количества осадка в течение длительного времени (табл. 6). Данное обстоятельство создает определенные неудобства и ограничения для применения соединений железа (Ш) при очистке щелочных сточных вод производства тиоколов.

 

Таблица 6. Кинетика выпадения осадка с течением времени

Коагулянт

Концентрация

коагулянта, моль/л

Содержание осадка, г/л

20 ч 10 сут 60 сут Всего
FeCl3 0,061 19,058 0,495 1,167 20,720
Fe2(SO4)3 0,025 14,090 0,888 0,972 15,950
NH4Fe(SO4)2 0,056 10,605 3,400 3,640 17,645

 

Наибольшая эффективность очистки щелочных сточных вод производ, ства полисульфидных каучуков достигается при использовании FеCl3 и Fe2(SO4)3 в дозировке 10 г/л. Железоаммонийные квасцы также можно применять в качестве коагулянта, но сдерживающими факторами являются большая дозировка и высокая стоимость [6].


Заключение

 

В курсовой работе представлены методы очистки сточных вод производств полимерных материалов, в частности, производств полистиролов и сополимеров стирола, фенолформальдегидных смол, мочевиноформальдегидных смол, эпоксидных смол, поливинилацетатных полимеров, полисульфидных каучуков.

Детально рассмотрены условия образования сточных вод указанных производств и различные методы очистки, а именно: термическое обезвреживание, физико-химическая и биологическая очистка, очистка методом высокотемпературного парофазного, каталитического парофазного и жидкофазного термоокислительного обезвреживания.

Некоторые из представленных методов очистки являются безотходными, как, например очистка сточных вод производств ПСБ (ПСБ-С), ПСБ-Л и сополимера марки СНП-СП. Здесь образующиеся сточные воды представляют собой коллоидные системы молочно-белого цвета, устойчивость которых обусловлена присутствием в воде сольвара. Следует отметить, что установлена принципиальная возможность многократного использования в процессе полимеризации маточных растворов, содержащих сольвар. Для обезвреживания маточных растворов применяют термический метод.


Литература

 

1. Соколов Р.С. Химическая технология. М.: ВЛАДОС, 2000. – Т. 2, с. 386 – 388.

2. Родионов Л.И. Техника защиты окружающей среды. М.: Химия, 1989, 511 с.

3. Проскуряков В.П., Шмидт Л.И. Очистка сточных вод в химической промышленности. Л., «Химия», 1977, 463 с.

4. Очистка производственных сточных вод: Учебное пособие для студентов вузов/Яковлев С. В., Карелин Я. А., Ласков Ю. М., Воронов Ю. В. М.: Стройиздат, 1979. 320 с.

5. Запольский А.К., Баран А.А. Коагулянты и флокуллиты в процессах очистки воды: Свойства. Получение. Применение. – П.: Химия, 1987. – 208 с.

6. Степанова С.В., Шайхиев И.Г., Смородинов А.Д., Арсеньев С.А., Фридланд С.В. Очистка сточных вод производства полисульфидных каучуков/ «ЭКиП», № 5, 2003, с. 42-44.

7. Мухленов И.П. Общая химическая технологи. М.: Высшая школа. 1977, 207 с.

8. Жуков А.К., Мапайт И.А., Родзиллер И.Д. Методы очистки производственных сточных вод. – Справочное пособие. М., Стройиздат, 1977, 208 с.


Поделиться с друзьями:

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.032 с.