Научные предпосылки создания атомного оружия — КиберПедия 

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Научные предпосылки создания атомного оружия

2020-04-01 69
Научные предпосылки создания атомного оружия 0.00 из 5.00 0 оценок
Заказать работу

 

Создание ядерной бомбы, как нестранно, предполагало мирный характер. Ядерное оружие для ее создателей должно было служить надежной броней, защитой от врагов. Творцы ядерного оружия с помощью бомбы предполагали спасение мира от «фашизма», «коммунистической чумы». Ядерное оружие выступило в качестве символа и гарантии национальной безопасности и мирного существования государств, которые стремились к овладению атомной энергией. Таким образом, наиболее страшное смертельное для всего живого орудие, создавалось как надежный и мощный гарант мирной жизни на планете.

Применение ядерного оружия в японских городах Хиросима и Нагасаки 6 августа 1945 года доказало необычайную разрушительную силу нового изобретения. Мир был потрясен последствиями применения ядерной бомбы. Города были фактически стерты с лица земли. Ничто живое не способно выжить в зоне действия этого монстра. Многие годы японские семьи хоронили своих членов, которые оказались в радиусе волны ядерной бомбы, что разрушило жизнеспособность различных органов людей и вызвало многочисленные болезни.

Эти два взрыва на японской земле, парализовал на несколько десятилетий воинствующих деятелей. Ученые оказались правы, ядерное оружие обладает некоторой сдерживающей силой. Можно отметить, что, во всяком случае, большая часть человечества осознала опасность применения ядерного оружия. Это дает нам основания надеяться, что человечество не потеряет на каком-то повороте истории остатки разума и данное вооружение так и останется только угрозой и сдерживающим фактором развязывания новых мировых войн.

Ядерное оружие определяется «оружием массового поражения взрывного действия, основанном на использовании энергии, которая выделяется при ядерной реакции при делении или синтезе». Соответствующе ядерный заряд делят как ядерный и термоядерный. Ученые уже в конце 30-х годов прошлого века знали способы выделения энергии при делении или синтезе атомных ядер. Первым способом был способ, предполагающий наличие цепных реакций при делении ядра тяжелого элемента. Второй способ рассчитывал на слияние ядер легких элементов с созданием более тяжелых ядер. Сила ядерного заряда часто выражается с помощью «тротилового эквивалента». А, именно, мощность взрыва, которая сообщается данным ядерным зарядом, определяется обычным взрывчатым веществом тротилом, взрываемым для высвобождения такой же энергии. Одной ядерной бомбе фактически эквивалентно согласно данному измерению один миллион тонн обычной взрывчатки. Но результаты взрыва от ядерной бомбы значительно разрушительнее и опаснее, чем последствия взрыва объемом тротила в миллиард тонн.

Для создания ядерной энергии с помощью делений особое внимание вызывают ядра изотопов урана с атомными весами 233 и 235 и плутония - 239, которые делятся под действием нейтронов. Взаимосвязаны частицы во всех ядрах при сильном взаимодействии, которое является наиболее результативным на маленьких дистанциях. В крупных ядрах тяжелых элементов эти связи слабее, так как электростатические силы отталкивания между протонами имеют свойство разрыхления ядра. Распад ядер сопровождается резким возрастанием числа нейтронов, что делает возможным мгновенную реакцию деления, охватывающую все массу горючего. Достижение критического числа нейтронов вызывает цепную реакцию деления, что приводит к взрыву атомной бомбы.

Атомные боеприпасы можно различить по способу создания критической массы - пушечный и имплозивный тип. Простой боеприпас пушечного типа состоит из двух масс 235U, с размером меньшим критического. В результате выстрела внутренней пушкой обе массы соединяются, достигая критического значения. Ясно, что ядерные заряды вероятно делить и на сколь угодно большое количество частей. Затем приводить его в действие, соединяя различные массы в одну - критическую, с помощью взрыва заряда обычного взрывчатого вещества (ВВ). Такой способ более сложный, но позволит получать большие мощности зарядов.

Атомный боеприпас имплозивного типа вводится в действие с помощью ужимки урана 235U или плутония 239Pu при взрыве ВВ, который расположен вокруг. Взрывная волна сильно повышает плотность урана или плутония, что позволяет достичь «надкритическую массу» с малым количеством вещества. Для большего эффекта делящийся материал и в пушечном, и имплозивном боеприпасе опоясывают нейтронным отражателем, основой которого является бериллий, а для начала реакций в заряд по центру помещают источник нейтронов.

В добываемом уране изотоп 235U, необходимый для формирования ядерного боезаряда, находится в размере 0,7%. Для образования в достаточном количестве разделяющего вещества выполняют обогащение природного урана. Данная операция является наиболее технически сложной задачей при получении атомного боезаряда. Промышленные ядерные реакторы используются для искусственного получения плутония. В них накапливаются запасы плутония, в результате превращений 238U в 239Pu под влиянием потока нейтронов.

Если ядра легких элементов достаточно сближаются, то между ними действуют ядерные силы притяжения. Это позволяет провести синтез ядра более тяжелого элемента, что намного эффективнее процесса расщепления. Проведение операции полного синтеза одного килограмма смеси выделяет энергию приблизительно в четыре раза больше, чем процесс полного распада одного килограмма урана 235U. При этом термоядерный заряд не обладает критической массой. Поэтому при синтезе не существует ограничений по количеству изготовляемого заряда, что делает возможным добиться мощности заряда, равносильной мегатоннам тротилового эквивалента. Для достижения данного эффекта нужно добиться сближения ядер на очень малые расстояния, которым противодействует отталкивание между положительно заряженными ядрами. Преодолевается данное препятствие с помощью нагревания вещества до сверхвысоких температур. Эта операция и дала название всему процессу «термоядерной реакцией». Достижение десятков миллионов градусов и состояние ионизированной плазмы резко повышает возможность начала синтеза. Наибольшая эффективность демонстрируются ядрами тяжелого (дейтерий, D) и сверхтяжелого (тритий, T) изотопа водорода. Это объясняет название «водородными» первых термоядерных зарядов. В результате синтеза ядра изотопов водорода создают изотопы гелия 4Нe. Фактически для осуществления подобного синтеза необходимо получить такую высокую температуру и давление, какое бывает внутри звезды.

Термоядерный заряд можно классифицировать по способам его получения: двухфазный (деление-синтез) и трехфазный (деление-синтез-деление). Однофазным делением считают ядерный или «атомный» заряд. Первую схему двухфазного боеприпаса предложили в пятидесятых годах прошлого века советские ученые Я.Б. Зельдович, А.Д. Сахаров и Ю.А. Трутнев и американские исследователи Э. Теллер и С. Улам. В основу данного метода легла идея получения нужного нагрева и обжатия термоядерного заряда в результате испарений его оболочки. В ходе операции получали ряд взрывов. Этим обычной взрывчаткой запускалось действие атомной бомбы, которая фактически подпаливала термоядерный заряд. Для термоядерного материала использовался дейтерид литий-6.

ноября 1955 года - дата взрыва первой советской термоядерной бомбы с мощностью приблизительно 3 Мт. Созданная бомба была более совершенным оружием, чем американский образец, запущенный в 1952 году. В 1958 году была испытана последующая, более мощная бомба, сконструированная Ю.А. Трутневым и Ю.Н. Бабаевым, ставшая основанием для дальнейших разработок отечественного термоядерного вооружения.

Трехфазные термоядерные заряды имеют еще одну оболочку, состоящую из 238U. Под действием нейтронов высоких энергий, которые образуются при термоядерном взрыве, происходит процесс деления ядра 238U, что дополнительно усиливает взрывную мощность.

Также была создана разновидность термоядерных боеприпасов - нейтронные, которые характеризуются усилением радиационной среды. При применении нейтронного боеприпаса растет диаметр поражения живой силы, а диаметр разрушений снижается.

 


Поделиться с друзьями:

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.012 с.