Принципы обработки информации компьютером. Арифметические и логические основы работы компьютера. Алгоритмы и способы их описания. — КиберПедия 

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Принципы обработки информации компьютером. Арифметические и логические основы работы компьютера. Алгоритмы и способы их описания.

2019-12-18 3277
Принципы обработки информации компьютером. Арифметические и логические основы работы компьютера. Алгоритмы и способы их описания. 4.75 из 5.00 4 оценки
Заказать работу

Принципы обработки информации компьютером. Арифметические и логические основы работы компьютера. Алгоритмы и способы их описания.

Принципы обработки информации компьютером.

Компьютер или ЭВМ (электронно-вычислительная машина)- это универсальное техническое средство для автоматической обработки информации.

Аппаратное обеспечение компьютера - это все устройства, входящие в его состав и обеспечивающие его исправную работу.

 

Несмотря на разнообразие компьютеров в современном мире, все они строятся по единой принципиальной схеме, основанной на фундаменте идеи программного управления Чарльза Бэббиджа (середина XIX в). Эта идея была реализована при создании первой ЭВМ ENIAC в 1946 году коллективом учёных и инженеров под руководством известного американского математика Джона фон Неймана, сформулировавшего концепцию ЭВМ с вводимыми в память программами и числами - программный принцип.

 

Главные элементы концепции:

1. двоичное кодирование информации;

2. программное управление;

3. принцип хранимой программы;

4. принцип параллельной организации вычислений, согласно которому операции над числом проводятся по всем его разрядам одновременно.

 

Алгоритмы и способы их описания.

Способы описания алгоритмов

· словесный (на естественном языке);

· графический (с помощью стандартных графических объектов (геометрических фигур) – блок-схемы);

· программный (с помощью языков программирования)

 

Хранение информационных объектов различных видов на различных цифровых носителях

(2 часа: лекция и практика)

Вспомнив понятие объекта, которое определяется как некоторая часть окружающего мира, рассматриваемая как единое целое, можно высказать предположение, что информационную модель, которая не имеет связи с объектом-оригиналом, тоже можно считать объектом, но не материальным, а информационным.

Информационный объект — это совокупность логически связанной информации.

Информационный объект, «отчужденный» от объекта-оригинала, можно хранить на различных материальных носителях. Простейший материальный носитель информации — это бумага. Есть также магнитные, электронные, лазерные и другие носители информации.

С информационными объектами, зафиксированными на материальном носителе, можно производить те же действия, что и с информацией при работе на компьютере: вводить их, хранить, обрабатывать, передавать. При работе с информационными объектами большую роль играет компьютер. Используя возможности, которые предоставляют пользователю офисные технологии, можно создавать разнообразные профессиональные компьютерные документы, которые будут являться разновидностями информационных объектов. Все, что создается в компьютерных средах, будет являться информационным объектом.

Литературное произведение, газетная статья, приказ — примеры текстовых информационных объектов. Рисунки, чертежи, схемы — это графические информационные объекты. Различные документы в табличной форме — это примеры табличных информационных объектов. Видео и музыка – аудиовизуальные информационные объекты.

Довольно часто мы имеем дело с составными документами, в которых информация представлена в разных формах. Такие документы могут содержать и текст, и рисунки, и таблицы, и формулы, и многое другое. Школьные учебники, журналы, газеты — это хорошо знакомые всем примеры составных документов, являющихся информационными объектами сложной структуры. Для создания составных документов используются программные среды, в которых предусмотрена возможность представления информации в разных формах. Другими примерами сложных информационных объектов могут служить создаваемые на компьютере презентации и гипертекстовые документы.

Для хранения и передачи электронных информационных объектов используют съемные цифровые носители. К ним относятся:

съемный жесткий диск — устройство хранения информации, основанное на принципе магнитной записи, информация записывается на жёсткие (алюминиевые или стеклянные) пластины, покрытые слоем ферромагнитного материала,

дискета — портативный носитель информации, используемый для многократной записи и хранения данных, представляющий собой помещённый в защитный пластиковый корпус гибкий магнитный диск, покрытый ферромагнитным слоем,

компакт-диск — оптический носитель информации в виде пластикового диска с отверстием в центре, процесс записи и считывания информации которого осуществляется при помощи лазера (CD-ROM и DVD-диск - предназначенный только для чтения; CD-RW и DVD-RW информация может записываться многократно),

карта памяти или флеш-карта — компактное электронное запоминающее устройство, используемое для хранения цифровой информации (они широко используются в электронных устройствах, включая цифровые фотоаппараты, сотовые телефоны, ноутбуки, MP3-плееры и игровые консоли),

USB-флеш-накопитель (сленг. флэшка) — запоминающее устройство, использующее в качестве носителя флеш-память и подключаемое к компьютеру или иному считывающему устройству по интерфейсу USB.

Все программы и данные хранятся в долговременной (внешней) памяти компьютера в виде файлов.

Файл — это определенное количество информации (программа или данные), имеющее имя и хранящееся в долговременной (внешней) памяти.

Имя файла состоит из двух частей, разделенных точкой: собственно имя файла и расширение, определяющее его тип (программа, данные и т. д.). Собственно имя файлу дает пользователь, а тип файла обычно задается программой автоматически при его создании.

Тип файла        Расширение

 

Исполняемые       программы     exe, com

 

Текстовые файлы        txt, rtf, doc

 

Графические файлы     bmp, gif, jpg, png, pds и др.

 

Web-страницы    htm, html

 

Звуковые файлы wav, mp3, midi, kar, ogg

 

Видеофайлы avi, mpeg

В операционной системе Windows имя файла может иметь до 255 символов, причем допускается использование русского алфавита, разрешается использовать пробелы и другие ранее запрещенные символы, за исключением следующих девяти: /\:*?"<>|. В имени файла можно использовать несколько точек. Расширением имени считаются все символы, стоящие за последней точкой.

Роль расширения имени файла чисто информационная, а не командная. Если файлу с рисунком присвоить расширение имени ТХТ, то содержимое файла от этого не превратится в текст. Его можно просмотреть в программе, предназначенной для работы с текстами, но ничего вразумительного такой просмотр не даст.

Атрибуты файла устанавливаются для каждого файла и указывают системе, какие операции можно производить с файлами. Существует четыре атрибута:

- только чтение (R);

- архивный (A);

- скрытый (H);

- системный (S).

Атрибут файла «Только чтение».

Данный атрибут указывает, что файл нельзя изменять. Все попытки изменить файл с атрибутом «только чтение», удалить его или переименовать завершатся неудачно.

Атрибут файла «Скрытый».

Файл с таким атрибутом не отображается в папке. Атрибут можно применять также и к целым папкам. Надо помнить, что в системе предусмотрена возможность отображения скрытых файлов, для этого достаточно в меню Проводника Сервис – Свойства папки – вкладка Вид – Показывать скрытые файлы и папки.

Атрибут файла «Архивный».

Такой атрибут имеют практически все файлы, его включение/отключение практически не имеет никакого смысла. Использовался атрибут программами резервного копирования для определения изменений в файле.

Атрибут файла «Системный».

Этот атрибут устанавливается для файлов, необходимых операционной системе для стабильной работы. Фактически он делает файл скрытым и только для чтения. Самостоятельно выставить системный атрибут для файла невозможно.

Для изменения атрибутов файла необходимо открыть окно его свойств и включить соответствующие опции.

Существуют также дополнительные атрибуты, к ним относятся атрибуты индексирования и архивации, а также атрибуты сжатия и шифрования.

При передачи и хранении различных файлов необходимо учитывать объем этих файлов. Если объем слишком велик, можно создать архив файлов с помощью программ архиваторов (7-zip, WinRAR, WinZip).

Архивация – это сжатие файлов, то есть уменьшение их размера.

При создании архивов исполняемые программы, текстовые файлы, графические файлы, Web-страницы, звуковые файлы, видео файлы сжимаются по-разному.

Запись информации.

Запись информации - это способ фиксирования информации на материальном носителе.

Способы записи информации на компакт-диски:

с помощью специальных программ записи (Nero, CDBurnerXP, Burn4Free, CD DVD Burning и др.);

через задачи для записи CD (помещаем нужные объекты на диск с помощью перетаскивания или копирования, выбираем в задачах записи CD «записать файлы на компакт-диск»).

Способы записи информации на остальные съемные цифровые носители:

копирование (выделяем нужные объекты, нажимаем правой кнопкой мыши, в появившемся контекстном меню выбираем «копировать»; через контекстное меню правой кнопки мыши, выбирая «вставить», вставляем объекты на нужный цифровой носитель);

перетаскивание (выделяем нужные объекты, нажимаем левую кнопку мыши, удерживая её, перетаскиваем документы на нужный цифровой носитель).

Материальная природа носителей информации может быть различной:

- молекулы ДНК, которые хранят генетическую информацию;

- бумага, на которой хранятся тексты и изображения;

- магнитная лента, на которой хранится звуковая информация;

- фото- и кинопленки, на которых хранится графическая информация;

- микросхемы памяти, магнитные и лазерные диски, на которых хранятся про-граммы и данные в компьютере, и так далее.

По оценкам специалистов, объем информации, фиксируемой на различных носителях, превышает один экзабайт в год. Примерно 80% всей этой информации хранится в цифровой форме на магнитных и оптических носителях и только 20% - на аналоговых носителях (бумага, магнитные ленты, фото- и кинопленки).

Большое значение имеет надежность и долговременность хранения информации.

Большую устойчивость к возможным повреждениям имеют молекулы ДНК, так как существует механизм обнаружения повреждений их структуры (мутаций) и самовосстановления.

Надежность (устойчивость к повреждениям) достаточно высока у аналоговых носителей, повреждение которых приводит к потери информации только на поврежденном участке. Поврежденная часть фотографии не лишает возможности видеть оставшуюся часть, повреждение участка магнитной ленты приводит лишь к временному пропаданию звука и так далее.

Цифровые носители гораздо более чувствительны к повреждениям, даже утеря одного бита данных на магнитном или оптическом диске может привести к невозможности считать файл, то есть к потере большого объема данных. Именно поэтому необходимо соблюдать правила эксплуатации и хранения цифровых носителей информации.

Наиболее долговременным носителем информации является молекула ДНК, которая в течение десятков тысяч лет (человек) и миллионов лет (некоторые живые организмы), сохраняет генетическую информацию данного вида.

Аналоговые носители способны сохранять информацию в течение тысяч лет (египетские папирусы и шумерские глиняные таблички), сотен лет (бумага) и десятков лет (магнитные ленты, фото- и кинопленки).

Цифровые носители появились сравнительно недавно и поэтому об их долговременности можно судить только по оценкам специалистов. По экспертным оценкам, при правильном хранении оптические носители способны хранить информацию сотни лет, а магнитные - десятки лет.

Цифровые носители информации компьютера предназначены для долговременного хранения информации, поэтому их часто называют внешней памятью компьютера или внешними запоминающими устройствами (ВЗУ).

studopedia.ru

Жесткие магнитные диски.

Жесткий диск (HDD — Hard Disk Drive) относится к несменным дисковым магнитным накопителям. Первый жесткий диск был разработан фирмой IBM в 1973 г. и имел емкость 16 Кбайт. Жесткие магнитные диски представляют собой несколько десятков дисков, размещенных на одной оси, заключенных в металлический корпус и вращающихся с высокой угловой скоростью. Скорость записи и считывания информации с жестких дисков достаточно велика (около 133 Мбайт/с) за счет быстрого вращения дисков (7200 об./мин).

В процессе работы компьютера случаются сбои. Вирусы, перебои энергоснабжения, программные ошибки - все это может послужить причиной повреждения информации, хранящейся на Вашем жестком диске. Повреждение информации далеко не всегда означает ее потерю, так что полезно знать о том, как она хранится на жестком диске, ибо тогда ее можно восстановить. Тогда, например, в случае повреждения вирусом загрузочной области, вовсе не обязательно форматировать весь диск (!), а, восстановив поврежденное место, продолжить нормальную работу с сохранением всех своих бесценных данных.

В жестких дисках используются достаточно хрупкие и миниатюрные элементы. Чтобы сохранить информацию и работоспособность жестких дисков, необходимо оберегать их от ударов и резких изменений пространственной ориентации в процессе работы.

Лазерные дисководы и диски.

В начале 80-х годов голландская фирма «Philips» объявила о совершенной ею революцией в области звуковоспроизведения. Ее инженеры придумали то, что сейчас пользуется огромной популярностью - Это лазерные диски и проигрыватели.

Лазерные дисководы используют оптический принцип чтения информации. На лазерных дисках CD (CD — Compact Disk, компакт диск) и DVD (DVD — Digital Video Disk, цифровой видеодиск) информация записана на одну спиралевидную дорожку (как на грампластинке), содержащую чередующиеся участки с различной отражающей способностью. Лазерный луч падает на поверхность вращающегося диска, а интенсивность отраженного луча зависит от отражающей способности участка дорожки и приобретает значения 0 или 1. Для сохранности информации лазерные диски надо предохранять от механических повреждений (царапин), а также от загрязнения. На лазерных дисках хранится информация, которая была записана на них в процессе изготовления. Запись на них новой информации невозможна. Производятся такие диски путем штамповки. Существуют CD-R и DVD-R диски информация на которые может быть записана только один раз. На дисках CD-RW и DVD-RW информация может быть записана/перезаписана многократно. Диски разных видов можно отличить не только по маркировки, но и по цвету отражающей поверхности.

Как известно, изобретение ЭВМ является одним из выдающихся достижений XX века. Немногим более чем за полвека вычислительная техника прошла путь от идеи создания и первых, достаточно простых с современной точки зрения, устройств до сложнейших систем. Это касается как технической и технологической базы, так и способов организации этих систем и управления ими, которое осуществляется с помощью программного обеспечения. В развитие вычислительных систем вложена интеллектуальная мощь самых высокоразвитых стран мира.

1. МАШИНА БЭББИДЖА

В первой половине XIX в. англичанин Чарльз Бэббидж (1791-1871) разработал конструкцию машины, которую можно было бы назвать первым компьютером. Но он не был построен, так как машина должна была быть механической, а необходимая точность изготовления деталей для этой машины в середине XIX в. была недостижима. Устройство компьютера по чертежам Бэббиджа было описано Августой Адой Лавлейс. Она же разработала теорию программирования, написала несколько программ для еще не существующей вычислительной машины. Загружать программу надо было при помощи карточек с пробитыми дырочками - перфокарт.

Основные части первого компьютера были теми же, что и в любой современной ЭВМ:

- устройство для ввода данных;

- запоминающее устройство, способное хранить исходные данные и промежуточные результаты (Бэббидж назвал его "складом");

- арифметико-логическое устройство, выполняющее арифметические и логические операции ("мельница");

- устройство управления, руководящее перемещениями со "склада" на "мельницу" и работой "мельницы" и обеспечивающее выполнение нужных действий в нужном порядке по заданной программе;

- устройство для вывода результата.

Приборы, которые можно отнести к программируемым устройствам:

- математик и корабел А. Н. Крылов (1863-1945) изобрел машину для решения дифференциальных уравнений;

- в 1915 г. немецкая фирма "Аскания" построила вычислительную машину для расчета времени приливов и отливов на северном побережье Германии, она работала до 1975 г.;

- в 1804 г. французский инженер Жозеф Мари Жаккард сконструировал станки, которые ткали сложные узоры, руководствуясь последовательностью перфокарт;

- различные музыкальные автоматы, шарманки, механические пианино.

ПРИНЦИПЫ ФОН НЕЙМАНА

Первая вычислительная машина и подавляющее большинство последующих машин были основаны на принципах, которые были предложены американским ученым Джоном фон Нейманом. Укажем эти принципы в современной трактовке.

Вычислительная машина состоит из следующих основных блоков:

устройство управления,

арифметико-логическое устройство,

запоминающее устройство,

устройство ввода-вывода.

Программы и данные хранятся в одной и той же памяти (концепция хранимой программы). Команды представляются в числовой форме и хранятся в том же запоминающем устройстве, что и данные для вычислений. Таким образом, команды можно посылать в арифметическое устройство и преобразовывать как обычные числа. Это позволяет создавать программы, способные в процессе вычислений изменять самих себя.

Устройство управления и арифметическое устройство (обычно объединенные в центральный процессор) определяют действия подлежащие выполнению путем считывания команд из оперативной памяти (концепция последовательного потока команд управления). При этом:

программа состоит из набора команд, которые выполняются одна за другой,

адрес очередной ячейки памяти, из которой следует брать команду, указывается счетчиком команд в устройстве управления,

в зависимости от полученных результатов имеется возможность менять последовательность вычислений (условный переход),

данные, с которыми работает программа, могут включать переменные (т.е. имена). Области памяти могут быть также поименованы, так что к запомненным в них значениям можно впоследствии обращаться или менять их во время выполнения программы с использованием присвоенных имен.

Первые вычислительные машины были предназначены только для производства вычислений. Дальнейшее развитие вычислительных средств диктовалось все расширяющимся кругом задач, решение которых и определило развитие технических и программных средств.

ЗАКЛЮЧЕНИЕ

Из новых принципов построения вычислительных систем последующих поколений можно выделить организацию вычислительных систем с программируемой архитектурой (создание некоторой виртуальной вычислительной системы на базе имеющихся технических средств для решения определенного класса задач), управление потоком данных вместо потока команд, отказ от классических принципов построения вычислительных систем, в том числе от неймановского принципа программного управления.

 

 

Принципы обработки информации компьютером. Арифметические и логические основы работы компьютера. Алгоритмы и способы их описания.

Принципы обработки информации компьютером.

Компьютер или ЭВМ (электронно-вычислительная машина)- это универсальное техническое средство для автоматической обработки информации.

Аппаратное обеспечение компьютера - это все устройства, входящие в его состав и обеспечивающие его исправную работу.

 

Несмотря на разнообразие компьютеров в современном мире, все они строятся по единой принципиальной схеме, основанной на фундаменте идеи программного управления Чарльза Бэббиджа (середина XIX в). Эта идея была реализована при создании первой ЭВМ ENIAC в 1946 году коллективом учёных и инженеров под руководством известного американского математика Джона фон Неймана, сформулировавшего концепцию ЭВМ с вводимыми в память программами и числами - программный принцип.

 

Главные элементы концепции:

1. двоичное кодирование информации;

2. программное управление;

3. принцип хранимой программы;

4. принцип параллельной организации вычислений, согласно которому операции над числом проводятся по всем его разрядам одновременно.

 


Поделиться с друзьями:

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.061 с.