Часть 4: Основные цели тренинга. — КиберПедия 

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Часть 4: Основные цели тренинга.



Прежде чем приступить к рассмотрению правил построения многоцелевых тренировок следует систематизировать тренировочные цели, а затем определить основные функции, развитие которых может привести к достижению поставленных целей.

В зависимости от специализации спортсмена в качестве основной цели тренинга можно выделить развитие следующих качеств мышц:
- сила, развиваемая мышцами в специализированных движениях (пауэрлифтинг, тяжелая атлетика);
- силовая выносливость (гиревой спорт, борьба, спринтерский бег);
- мышечные объемы (бодибилдинг).

Сила

Давайте для начала разберемся, от чего зависит результат, достигаемый спортсменом в специализированных движениях в тяжелой атлетике или пауэрлифтинге. Проявление скоростно-силовых качеств мышц, в упомянутых видах спорта, несколько отличается. Цель пауэрлифтера поднять максимальный вес независимо от скорости движения. В тяжелой атлетике соревновательные движения технически боле сложные, и конечный результат зависит от того, будет ли штанга в нужной точке траектории иметь нужную скорость движения. Масса снаряда в тяжелой атлетике относительно ниже, чем в пауэрлифтинге, однако, cнаряд приходится разгонять до значительно больших скоростей. Но при внимательном рассмотрении различия оказываются не столь существенными. Дело в том, что сила, которую спортсмену необходимо прикладывать к снаряду для его равномерного подъема (вернее проекция силы на вертикальную ось) равна произведению массы снаряда на ускорение свободного падения, вспомните второй закон Ньютона F=mg (напоминаю, что буквами F принято обозначать силу, m -массу, а g- ускорение свободного падения). Конечно, в момент отрыва, для придания снаряду начальной скорости, необходимо приложить несколько большую силу, так как снаряду необходимо сообщить начальное ускорение. Сила, которую необходимо в этом случае приложить к снаряду, равна F=m(g+a), где а - ускорение, сообщаемое снаряду. Различие между пауэрлифтингом и тяжелой атлетикой как раз и проявляется в величине этого ускорения. В пауэрлифтинге штанге необходимо сообщить лишь минимальное ускорение, достаточное для ее срыва и придания минимальной скорости, достаточной для прохождения мертвой точки. В тяжелой же атлетике требование к развиваемому ускорению значительно выше, чем в пауэрлифтинге. Но, и в том и в другом случае результат зависит от силы, прикладываемой к снаряду. Чем выше сила, тем больше масса штанги, которой пауэрлифтер может придать минимально необходимое ускорение, и тем больше ускорение, которое тяжелоатлет может придать штанге с определенной массой. Таким образом, в обоих видах спорта результат зависит от силы, прикладываемой к снаряду, а, соответственно, от силы, развиваемой мышцами. Здесь следует иметь в виду и еще одно различие между пауэрлифтингом и тяжелой атлетикой - сила мышц, зависит от скорости их сокращения, вспомните соотношение Хилла, упоминаемое мной в первой части, - чем выше скорость сокращения мышцы, тем меньшую силу она способна развить. В тяжелой атлетике мышцы вынуждены сокращаться при несколько больших скоростях, чем в пауэрлифтинге, поэтому и развиваемая ими сила несколько меньше.



Результат в соревновательных движениях зависит не только от силы мышц, но и от оптимальной траектории движения, своевременного и эффективного приложения силы к снаряду, то есть от техники выполнения упражнения. Я не буду подробно останавливаться на этом вопросе, так как не считаю себя в нем достаточно компетентным, тем более, что за годы развития таких видов спорта как тяжелая атлетика и пауэрлифтинг накоплен богатый методический материал по постановке техники соревновательных движений. Скажу только, что основой освоения техники выполнения упражнения является наработка определенного количества движений, что приводит к закреплению в центральной нервной системе двигательного стереотипа. Отчасти, видимо, поэтому одним из существенных критериев в планировании тренировочных нагрузок на начальном этапе тренинга, в классической спортивной школе, является КПШ - количество поднятых штанг.

Давайте лучше рассмотрим, от чего зависит собственно сила, развиваемая мышцами, и какие методы тренировки могут повлиять на способность мышц генерировать силу. Как вы помните из первой части, сократительным элементом волокна является миофибрильная нить. Силу, развиваемую миофибриллой, генерируют боковые выступы молекулы миозина, называемые мостиками, совершая гребковые движения. Обращаю ваше внимание на тот факт, что миофибрилла, это цепочка последовательно соединенных саркомеров, а крепость цепи, как известно, зависит от крепости любого ее звена. Сила миофибриллы как целого не может быть больше силы ее части - отдельного саркомера, то есть каждый саркомер должен развивать одинаковую силу, и эта сила равна силе всей миофибриллы. Сила, развиваемая саркомером, зависит от его длины, чем длиннее саркомер, тем большим количеством миозиновых мостиков он располагает и тем сильнее его сокращение. Мышечные волокна разных мышц и даже одних и тех же мышц, но у различных индивидов имеют разные длины саркомеров, и, соответственно, разную способность к генерации силы. Однако, длина саркомера задается генетически и не поддается тренировке, поэтому в дальнейшем влияние длины сркомера на силу я даже не буду рассматривать.



И так, из выше сказанного можно сделать вывод, что сила мышцы зависит не от длины миофибрильных нитей (от этого зависит амплитуда сокращения мышцы), а от количества миофибрильных нитей в поперечном сечении мышцы. А вот этот параметр как раз и поддается развитию.

Основные принципы тренировки, нацеленной на рост сократительных структур мышц, я рассматривал во второй части. Напомню основную фабулу:

Высокоинтенсивные тренировки, приводящие к сокращению мышц в условиях недостатка макроэнергетических фосфатов, разрушают сократительные белки мышечных волокон. Микротравмы мышечных волокон запускают восстановительные процессы, приводящие к делению клеток - сателлит и увеличению клеточных ядер в мышечных волокнах, что при условии достаточно длительного и полноценного восстановления, приводит к увеличению сократительных структур в мышце.

Во второй части я показал, что сила, развиваемая мышечным волокном, и скорость его сокращения зависит от насыщенности волокна АТФ. Так как сокращение мышц не мгновенно и длится некоторое время даже при единичных повторениях упражнения и сопровождается расходом АТФ, то результат выполнения упражнения зависит еще и от способности мышц мгновенно восстанавливать уровень АТФ, то есть от концентрации в волокне креатинфосфата и креатинкиназы.

Содержание креатинфосфата в мышцах спортсменов 1.5-2 раза выше, чем у нетренированных людей, соответственно данное качество мышц поддается тренировке. Посмотрим, какой вид тренировки наиболее эффективен для целей повышения в мышцах концентрации креатинфосфата.

Надо отметить, что содержание креатина в мышцах значительно превышает концентрацию собственно креатинфосфата. Так общая концентрация креатина в мышцах составляет в среднем 120 ммоль/кг, в то время как с фосфатом связано (то есть является креатинфосфатом) только около 70 ммоль/кг. Таким образом, существенная часть креатина в мышцах находится в несвязанном с фосфатом состоянии, и резерв увеличения концентрации креатинфосфата заключается как раз в этом не связанном с фосфатом креатине, необходимо лишь заставить мышцы фосфолировать больше креатина. Существенное снижение концентрации креатинфосфата во время интенсивного сокращения мышц (то есть отсоединение от него фосфата и превращение просто в креатин) сразу по прекращению работы приводит к интенсификации процессов восстанавливающих его уровень. Во время отдыха, благодаря кислородному окислению, АДФ и фосфат, в избытке накопившиеся в мышце в результате гидролиза АТФ при работе миозиновых мостиков и кальциевых насосов, вновь превращаются в АТФ, а затем фосфатная группа переносится с АТФ на креатин, с образованием креатинфосфата. В результате концентрация креатинфосфата в мышце уже через несколько минут отдыха не только восстанавливается, но и превышает исходный уровень, характерный для состояния покоя. То есть наблюдается сверхвосстановление креатинфосфата в мышце, однако, такое состояние длится не долго и концентрация креатинфосфата снижается уже через пару часов. Проводя повторные нагрузки на мышцу в состоянии суперкомпенсации, то есть после отдыха в несколько минут, можно добиться заметного повышения концентрации креатинфосфата. Правда, уже через несколько часов концентрация последнего существенно снижается, но, по-видимому, некоторое превышение исходного уровня сохраняется дольше, так как регулярные тренировки (не реже 2-3-х раз в неделю) приводят к постепенному относительно стойкому повышению концентрации креатинфосфата в мышцах, в противовес этому, перерыв в тренировках, дольше, чем на одну неделю, заметно снижает уровень креатинфосфата.

Рассмотрим чуть более подробно принципы тренировок, направленных на развитие креатинфосфатной мощности и емкости мышц.

Уровень нагрузки при таких тренировках должен быть достаточно высоким (чтобы активировать большую часть мышечных волокон и обеспечить высокую скорость расхода энергии) и составлять 70-85 % от единичного максимума.

Длительность нагрузки должна быть таковой, чтобы запасы креатинфосфата в мышце были использованы не менее чем на половину, то есть нагрузка должна продлиться не менее 7-ми секунд. В то же время работу желательно прекращать до активации гликолиза, так как накопление молочной кислоты в мышцах приводит к замедлению темпов восстановления АТФ и креатинфосфата. Соответственно, стремится к полному отказу мышц не следует, и нагрузка не должна длиться дольше 15 секунд. Если выше сказанное перевести на язык повторений, то рекомендуемое количество повторений в подходе составит 4-6.

Отдых между подходами должен быть около 3-5минут, что необходимо для обеспечения сверхвосстановления уровня креатинфосфата. И хотя теоретически возможен и более длительный отдых, так как сверхвосстановление длится полтора - два часа, но исходя из принципа экономии тренировочного времени, достаточно ограничится 3-5 минутами.

Количество таких подходов должно составлять от 5 до 10, больше просто не имеет смысла, так как резервы подъема уровня креатинфосфата в ходе одного занятия не беспредельны, а вот усталость будет накапливаться от подхода к подходу.

Интересно отметить, что Заслуженный тренер России по пауэрлифтингу Б.И. Шейко иногда практикует на своих подопечных выполнение серий подходов одного упражнения два раза за одну тренировку. Например, после 5-6 подходов в жиме лежа следует нагрузка на ноги, а затем спортсмен вновь возвращается к выполнению жима лежа и делает еще 5-6 подходов. Не знаю, какой смысл сам автор программ вкладывает в эти действия (возможно, просто стремится к общему увеличению объема нагрузки на требуемом уровне интенсивности), но, помимо всего прочего, такого рода практика должна способствовать повышению уровня креатинфосфата в мышцах, так как повторное возвращение к выполняемому упражнению после получасового -часового отдыха происходит на фоне повышенного предыдущими подходами уровня креатинфосфата.

Говоря о методах повышения концентрации креатинфосфата в мышцах, нельзя не поднять вопрос об эффективности приема креатина в качестве пищевой добавки. Запасы креатина в организме пополняются благодаря синтезу его в печени и поступлению креатина с пищей (мясные продукты). Эксперименты (Harris et al.) показывают, что прием высоких доз креатина 5гр. 4-5 раз в сутки (5гр. креатина эквивалентно одному килограмму сырого мяса) в течение недели приводит к существенному увеличению как концентрации креатина в мышцах, так и концентрации креатинфосфата. Но наиболее выражен прирост этих показателей при ежедневных тренировках. Так содержание креатина в мышцах в среднем увеличилось с 118.1 ммоль/кг до 148.5 ммоль/кг в не упражнявшейся мышце и до 162.2 ммоль/кг в у пражнявшейся. Содержание креатинфосфата за этот же период возросло от 81.6 ммоль/кг до 93.8 ммоль/кг в не упражнявшейся и до 103.1 в упражнявшейся мышце. Дальнейший прием креатина не привел к существенным изменениям концентрации креатина и креатинфосфата в мышцах. Интересно отметить что ряд спортсменов не получили существенного прироста вышеуказанных показателей, несмотря на потребление креатина, как оказалось эти спортсмены изначально обладали высокими показателями содержания креатина в мышцах. В данных экспериментах убедительно доказано, что прием сверх доз креатина с пищей положительно сказывается на креатинфосфатной емкости мышц, однако о побочных эффектах таких дозировок ничего не сообщается.

И так мы рассмотрели методы тренировок, способствующие развитию силы собственно мышечных волокон. Сила же мышцы как целого зависит от того, как много волокон одновременно включены в работу и от того, с какой частотой стимулируются мышечные волокна (чем выше частота, тем сильнее сокращение). Что, в свою очередь, зависит от того, насколько сильно поляризуется мембрана тела мотонейрона, расположенного в спинном мозге, под воздействием сигнала поступающего по сети нейронов из вышележащих отделов ЦНС (центральной нервной системы). Путь нервного импульса начинается в двигательных центрах головного мозга и проходит вниз по спинному мозгу к мотонейронам, иннервирующим волокна той или иной мышцы. Напоминаю, что каждый мотонейрон имеет свой порог возбудимости и включается в работу, только если возбуждение его мембраны превышает этот порог. Таким образом, чем сильнее импульс, поступающий от мозга, тем больше мотонейронов, а, соответственно, и иннервируемых ими волокон, подключаются к сокращению. Кроме того, чем сильнее поляризация мембраны мотонейрона, тем выше частота потенциала действия, возникающего в мотонейроне, и передающегося по аксону к мышечным волокнам.

Управление движением процесс крайне сложный и запутанный и я не рискну утверждать, что ученые здесь до конца во всем разобрались, а я тем более далек от полного понимания этих процессов. Поэтому я постараюсь объяснить ключевые моменты, не вдаваясь в дебри.

Судя по всему, управление двигательной активностью организовано так, что мозгу очень тяжело заставить сокращаться все двигательные единицы (мотонейроны и иннервируемые ими волокна) одновременно. ЦНС не генерирует максимальный импульс сразу, а запускает пробный импульс определенной величины (в зависимости от ожидаемой нагрузки), который активирует определенное количество мотонейронов. Специальные рецепторы, расположенные в мышцах (мышечные веретена), сигнализируют в мозг об изменениях длины мышцы, под действием поступившего сигнала и если сокращения не происходит или скорость его недостаточна (нагрузка слишком велика), то мозг усиливает запускающий сигнал и вовлекает в работу большее количество мотонейронов, одновременно усиливая частоту потенциала действия уже работающих мотонейронов. В результате одни волокна вовлекаются в работу чуть раньше, другие чуть позже, таким образом, максимумы сокращения различных волокон не совпадают, и двигательные единицы работают асинхронно (как поршни в двигателе автомобиля). Так достигается плавность движения, но не реализуется максимум силы, который мог бы быть достигнут при одновременном совпадении максимумов сокращения всех волокон мышцы. Между тем способность к быстрому вовлечению в работу максимального количества волокон поддается тренировке. Задача атлета научить мозг генерировать как можно более мощный запускающий импульс. Похоже, что развитие таких способностей подчиняется тем же правилам, что и тренировка всех иных функциональных качеств спортсмена, ранее рассматриваемых в данной работе. Прохождение максимально мощного нервного импульса по всей цепочке, от двигательных отделов головного мозга, до мышечных волокон, вызывает напряжение всех элементов этой цепи и ослабление их функциональных возможностей. То есть наблюдается физическая усталость - торможение нервной системы, что выражается в потере способности ЦНС генерировать и передавать сигнал требуемой силы. Восстановление функции нервной системы в период отдыха приводит к суперкомпенсации ее функциональных возможностей, а регулярное повторение этих процессов приводит к закреплению долговременных адаптационных изменений в ЦНС спортсмена.

И так, тактическая цель нервно-моторной тренировки заставить ЦНС генерировать максимально мощный нервный импульс. Для чего можно использовать работу с около предельными весами на 1-3 повторения, либо работу с умеренным весом, но во взрывном стиле, стараясь разгонять снаряд до максимальных скоростей, прикладывая к нему по всей траектории максимальную силу. Отдых между подходами на такой тренировке должен быть достаточно длительным, для восстановления способности ЦНС и собственно мышц развить необходимое усилие (от 5 минут и более, в зависимости от упражнения). В литературе я не встречал конкретных сведений о сроках сверхвосстановления возможностей ЦНС после тяжелой тренировки, поэтому делать выводы о необходимом отдыхе между такого рода тренировками я могу только исходя из практики силовых видов спорта. Как правило, серьезная нагрузка на ЦНС не практикуется чаще двух раз в неделю, и реже чем раз в 7-10 дней.

Но оказывается, что мощный импульс от ЦНС это еще не залог максимальной активации мотонейронов. Дело в том, что в сухожилиях расположены специальные рецепторы, так называемые органы Гольджи, цель которых контроль величины напряжения мышцы. При превышении напряжения в сухожилиях определенного порога, органы Гольджи оказывают на мотонейроны данной мышцы тормозящее воздействие. Понятно, что благодаря такому механизму мышца защищает себя от разрывов при чрезмерной нагрузке. Однако, сухожильные рецепторы не могут точно определить величину критического напряжения и срабатывают, как правило, с большим запасом, активизируясь, когда напряжение значительно превышает привычное. Поэтому цель спортсмена, стремящегося к поднятию действительно больших весов, отодвинуть этот защитный барьер. Один из способов такого воздействия на защитные механизмы - привыкание сухожилий и рецепторов к около предельной нагрузке. Чему может способствовать все та же работа с максимальными весами в 1-3 повторениях, и даже более того, - выполнение частичных повторений с нагрузкой, превышающей единичный максимум, то есть выполнение полуприседов, тяг с возвышения, дожимов штанги и пр. Вышесказанное еще раз подтверждает хорошо известный в теории физической культуры принцип специфичности, который можно выразить простыми словами: "Что тренируешь, то и получаешь".

Часть 5: Выносливость.

Итак, чуть раньше я рассмотрел факторы, от которых зависит сила, развиваемая мышцами, и методы тренировок, направленных на развитие силы за счет этих факторов. Теперь настало время разобраться, от чего зависит способность мышц удерживать необходимый уровень силы определенное время, то есть от чего зависит выносливость спортсмена, и какие методы тренировок приводят к развитию общей и специфической выносливости.

Интервальные тренировки

После возрождения олимпийских игр до начала I мировой войны господствующим методом тренировки на выносливость был метод непрерывной работы. Предполагалось, что интенсивность и продолжительность тренировки должна соответствовать условиям предстоящих соревнований. Так, например, бегуны совершали забеги равные соответствующим соревновательным дистанциям, пытаясь, раз от разу, улучшить результат в забеге. В 20-е годы на смену непрерывной нагрузке пришел метод интервальной тренировки, успешное внедрение которого связано с именем выдающегося финского бегуна Паово Нурми и известного теоретика спортивных тренировки М Пикхала. Ими было показано, что многократное повторение коротких, но более интенсивных нагрузок дает гораздо больший тренировочный эффект, чем более длительная, но менее интенсивная работа. В последующие годы данный тезис получил все больше практических подтверждений, а исследователи выявили биохимические факторы лежащие в основе эффективности интервальных тренировок.

Так в чем же преимущество интервальных тренировок?

Для ответа на этот вопрос необходимо систематизировать множество факторов, влияющих на работоспособность спортсмена.

Среди факторов, ограничивающих работоспособность, можно выделить факторы общей выносливости, определяющиеся возможностями различных систем организма обеспечивать работу мышц и специфические факторы, ответственные за работоспособность собственно мышц спортсмена.

Общая выносливость лимитируется, в основном, способностью организма спортсмена обеспечить потребность мышц в кислороде и питательных веществах, а так же способностью отводить от мышц метаболические факторы утомления, такие как молочная и угольная кислоты. Напоминаю, что молочная кислота это конечный продукт гликолиза, а угольная кислота получается при растворении углекислого газа, образующегося в ходе окисления органических веществ. Таким образом, общая выносливость определяется возможностями кровеносной и дыхательной систем организма, а также запасами органического топлива (в основном, глюкозы в мышцах и печени и жирных кислот в жировой ткани) и эффективностью мобилизации топлива в случае необходимости.

Способность организма поглощать кислород и выводить углекислый газ зависит, прежде всего, от дыхательного объема легких, и скорости газообмена в них.

Возможности кровеносной системы по переносу кислорода лимитируются общим объемом крови, концентрацией в крови гемоглобина (белка переносчика кислорода), и скоростью циркуляции крови. Последняя зависит от ударного объема сердца (объема крови прокачиваемого сердцем за одно сокращение).

Возможности кровеносной системы по отводу кислых продуктов метаболизма от работающих мышц определяются, помимо общего объема крови и скорости ее циркуляции, способностью организма поддерживать физиологически нормальный уровень рН крови, скоростью утилизации молочной кислоты, и скоростью вывода углекислого газа через легкие. Протекание многих жизненно важных химических процессов в организме зависит от кислотно-щелочного равновесия (рН) среды. Примером может служить угнетающее влияние повышения кислотности мышечной саркоплазмы на активность АТФазы миозина, о котором я рассказывал ранее. В состоянии покоя кислотно-щелочное равновесие крови слегка смещено в щелочную сторону, и рН крови составляет 7.4 (в нейтральной среде рН=7). Интенсивная мышечная деятельность сопровождается образованием большого количества молочной кислоты в мышцах, кислота выводится в кровь, что повышает кислотность крови и снижает рН до 6.9-6.8. Организм человека способен выдержать лишь незначительное снижение рН крови, так в состоянии изнеможения рН может опуститься до 6.5, при этом наблюдается тошнота и головокружение. Борьбу с повышением кислотности крови организм ведет с помощью буферных реакций. Вещества, называемые бикарбонатными буферами, и содержащиеся в крови (примером может служить NaHCO3), вступают в реакцию с молочной кислотой, образуя соль молочной кислоты и более слабую угольную кислоту, которая легко распадается на воду и углекислый газ. Последний выводится через легкие в выдыхаемый воздух, образуя, так называемый, неметаболический избыток углекислого газа. Определяя соотношение вдыхаемого кислорода и выдыхаемого углекислого газа можно судить об интенсивности гликолиза в мышцах.

Зависит рН среды и от скорости вывода молочной кислоты из крови. Заканчивает свой метаболический путь молочная кислота либо в сердечной мышце, где окисляется в митохондриях и служит источником АТФ для сокращения миокарда, либо в печени, где с затратой энергии преобразуется обратно в глюкозу и далее в гликоген, после чего снова может служить источником энергии.

Какого же рода тренировки способствуют развитию описанных выше факторов, определяющих общую выносливость спортсмена?

Развитию дыхательной и кровеносной систем организма, увеличению возможностей данных систем по доставке кислорода к мышцам должны способствовать тренировки, сопровождающиеся созданием максимальной потребности мышц в кислороде. Такого рода нагрузка вызывает напряжение указанных систем организма и, соответственно, способствует необходимым адаптационным изменениям в данных системах.

Высокая скорость потребления кислорода достигается при нагрузках, такой мощности, поддерживать которую организм спортсмена способен лишь ограниченное время, после чего наступает усталость, поэтому эффективными будут серии высокоинтенсивных нагрузок перемежающиеся с отдыхом, необходимым для восстановления сил. Время удержания максимума потребления кислорода составляет обычно не более 6 минут, именно столько и должно длиться тренирующее упражнение аэробной направленности, отдых между повторениями упражнения в этом случае должен также составлять минут 6.

Эффективными, при воздействии на аэробные способности организма, оказываются и серии более коротких высокоинтенсивных нагрузок длительностью от 30 до 90 секунд, чередующихся со столь же короткими интервалами отдыха. Данный метод получил название "циркуляторной" интервальной тренировки, так как наиболее эффективно воздействует на циркуляторные показатели кровеносной системы и вызывает выраженную гипертрофию сердца. Эффективность метода заключается в том, что потребление кислорода в первые минуты отдыха после прекращения нагрузки сохраняется на высоком уровне, так как происходит так называемый возврат кислородного долга (получение окислительным путем энергии, необходимой для восполнения запасов АТФ и креатинфосфата, а так же для вывода молочной кислоты из мышц). Таким образом, в период короткого отдыха уровень потребления кислорода снижается не существенно, в то время как мышцы восстанавливают свои силы, восполняя запасы АТФ и креатинфосфата, избавляясь от продуктов метаболизма, после чего получают возможность вновь развить высокое усилие и вновь создать высокую потребность в кислороде. Поэтому в течение всей "циркуляторной" тренировки уровень потребления кислорода совершает незначительные колебания возле максимальных значений.

Для развития способности организма поддерживать кислотно-щелочное равновесие крови (за счет ускорения утилизации кислых продуктов метаболизма и накопления резервов буферных веществ) необходимо в ходе тренировки добиваться максимального повышения кислотности крови (естественно в пределах физиологически нормальных величин). Для чего наиболее эффективны серии высокоинтенсивных нагрузок длительностью 1-2 минуты с 1-2 минутным интервалом отдыха между подходами. Объясняется это тем, что максимум накопления молочной кислоты в крови наблюдается через некоторое время после прекращения короткой высокоинтенсивной нагрузки. Задержка в достижении максимума кислотности крови связана с необходимостью некоторого времени на вывод молочной кислоты из мышцы. Повторные нагрузки после отдыха, достаточного для значительного вывода молочной кислоты из мышц и восстановления их работоспособности, но не столь длительного, чтобы уровень кислоты в крови успел снизиться, приводят к наложению максимумов выброса кислоты в кровь друг на друга, и к значительному сдвигу кислотно-щелочного равновесия крови в кислую сторону. Усталость мышц, в виду остаточного накопления в них продуктов метаболизма, наблюдается после 3-4-х повторений такой нагрузки, поэтому эффективно будет разделить тренировку на несколько серий по 3-4 подхода с 10-15 минутным отдыхом между сериями.

Теперь разберемся с обеспечением мышц топливом. Основными источниками энергии для мышечной деятельности являются жирные кислоты, углеводы (в основном глюкоза) и аминокислоты. Запас свободных аминокислот в организме весьма незначителен, к использованию собственных белков в качестве топлива организм прибегает только в условиях недостатка энергии, например, при голодании или длительных истощающих нагрузках. При этом аминокислоты,

получаемые при катаболизме собственных белков, все равно, как правило, проходят этап преобразования в печени в глюкозу. Таким образом, основными источниками энергии, для мышечной деятельности остаются жирные кислоты и глюкоза. Жирные кислоты запасаются в жировой ткани, при необходимости они извлекаются в кровь и доставляются к работающим мышцам, саркоплазма мышц располагает и собственным небольшим запасом жирных кислот. Запасы жиров в организме практически неисчерпаемы в рамках единичной тренировки, если бы марафонский бег обеспечивался исключительно жирными кислотами, то для преодоления дистанции потребовалось бы около 320 граммов жира, в то время как, даже худощавый человек располагает несколькими килограммами жиров, а у отдельных индивидов вес жировой ткани может достигать нескольких десятков килограмм. Но возможности жиров как источника энергии ограничены. Жирные кислоты активно используются только при низко-интенсивных нагрузках, так как выход энергии на одну молекулу кислорода и скорость окисления для жиров несколько ниже, чем для глюкозы, поэтому при повышении энергозатрат, митохондрии переключаются с жирных кислот на глюкозу. Более того, энергозатраты, превышающие окислительные возможности мышц, активизируют гликолиз, а в этом случае глюкоза становится незаменимым источником энергии. Глюкоза запасается организмом в основном в мышцах в виде гранул гликогена, определенный запас гликогена имеется и в печени - 100-200 грамм. При коротких интенсивных нагрузках энергозатраты мышц покрываются за счет внутренних резервов гликогена. Размер внешних запасов энергии становятся актуальным лишь при пролонгированных нагрузках. Запасы жиров, как я уже упоминал ранее, исчерпать не реально при любой разумной длительности нагрузки, поэтому при использовании жиров в качестве источника энергии имеет значение не их количество, а активность ферментов, извлекающих жирные кислоты из жировой ткани и скорость проникновения жирных кислот в митохондрии. А вот резерв гликогена в печени может сыграть решающее значение при длительных нагрузках, поэтому только запасы гликогена, но не запасы жиров, можно рассматривать в качестве фактора ограничивающего общую выносливость организма. Соответствующие тренировки способны привести к увеличению запасов гликогена в печени и мышцах. Происходит это увеличение по уже известной схеме истощение - восстановление - сверхвосстановление. После истощающих нагрузок, при условии достаточного потребления углеводов с пищей, суперкомпенсация гликогена в печени и мышцах наступает примерно на третьи сутки. Для повышения содержания гликогена в печени используется так же метод "углеводной загрузки", когда в течение нескольких дней ограничивается потребление углеводов, затем, за день до соревнований, потребление углеводов значительно увеличивают, что приводит к резкому увеличению запасов гликогена в печени.

На этом я, пожалуй, завершу рассмотрение тренировочных методов, воздействующих на факторы общей выносливости организма, и перейду к рассмотрению, собственно, силовой выносливости мышц.

Способность мышц сокращаться с требуемым усилием определяется, прежде всего, насыщенностью мышц энергией. И хотя основной причиной снижения силы сокращения мышц является вовсе не отсутствие АТФ, а снижение АТФазной активности миозина и нарушения в механизме передачи возбуждения с нерва вглубь волокна, причиной упомянутых нарушений являются метаболические факторы утомления (молочная кислота, ортофосфорная кислота, АДФ и др.), а их появление в мышце связано как раз с доступностью энергии. Недостаток АТФ, производимой окислительным путем, приводит к активизации гликолиза и появлению в мышце большого количества молочной кислоты (лактата), недостаток энергии, производимой путем гликолиза, приводит к истощению запасов креатнфосфата и, соответственно, увеличению в мышце концентрации ортофосфата.

По Н.И. Волкову при рассмотрении факторов работоспособности мышц, в зависимости от основного механизма энергообеспечения, следует различать аэробную (окисление) и анаэробную работоспособность, а анаэробная работоспособность, в свою очередь, делится на лактатную (гликолиз) и алактатную (креатинфосфат). В качестве главных критериев оценки механизмов энергообеспечения мышечной деятельности принято выделять максимальную мощность, время удержания максимальной мощности, и общую емкость механизма. Максимальная мощность - это наибольшая скорость образования АТФ в данном метаболическом процессе. От мощности механизма энергообеспечения зависит возможная сила сокращения мышц в данном режиме работы. Под емкостью понимается общее количество энергии, которое можно получить за счет данного механизма ресинтеза АТФ.

Алактатная работоспособность мышц

Максимальная алактатная мощность, с одной стороны, зависит от концентрации и активности фермента креатинкиназа (переносящего фосфатную группу с креатинфосфата на АДФ) и собственно креатинфосфата, с другой стороны мощность данной реакции зависит от потребности мышц в энергии, соответственно, определяется максимальной скоростью расхода АТФ развиваемой мышцами. Максимальная длительность удержания алактатной мощности составляет 6-12 секунд. Алактатная емкость зависит от запасов креатинфосфата в мышце. О методах тренировки алактатной мощности и емкости я уже рассказывал ранее, рассматривая методы развития максимальной силы, и сейчас не буду подробно останавливаться на этом вопросе.

Лактатная работоспособность мышц

Максимальная лактатная мощность определяется главным образом конценрацией и активностью ключевых ферментов гликолиза. Время удержания максимальной мощности данного метаболического процесса составляет 30-60 секунд, и определяется, с одной стороны, устойчивостью ферментов гликолиза к понижению рН среды (повышение кислотности среды ингибирует активность гликолитических ферментов, что подавляет энергопроизводство), и устойчивостью кислотно-щелочного равновесия внутренней среды мышц, в условиях усиленной выработки лактата. С другой стороны, время удержания максимальной гликолитической мощности лимитируется факторами утомления мышцы, снижающими интенсивность сокращения.

Из вышесказанного следует, что для запуска адаптационных процессов, направленных на увеличение максимальной гликолитической мощности, длительность нагрузки должна соответствовать времени удержания максимальной мощности данного метаболического процесса, что составляет 30-60 секунд. Отдых между подходами должен быть достаточно длительным, для обеспечения вывода продуктов метаболизма из мышцы и развития высокой мощности гликолиза в следующем подходе. Устойчивость рН среды мышечных волокон к выбросу молочной кислоты и устойчивость ключевых ферментов к снижению рН вырабатывается в ходе тренировок, сопровождающихся максимальным накоплением лактата в мышцах. Это могут быть нагрузки высокой интенсивности, длительностью 1-1.5 минуты до наступления отказа мышц, вызванного сильным закислением, либо более короткие нагрузки, длительностью 20-40 секунд, со столь же коротким интервалом отдыха, приводящие к кумулятивному накоплению лактата в мышцах.

Гликолитическая емкость определяется главным образом запасами гликогена в мышцах, гликоген печени для процессов гликолиза не обладает достаточной мобильностью. О методах накопления мышечного гликогена, как и гликогена печени, я уже рассказывал при рассмотрении факторов общей работоспособности организма.

Аэробная работоспособность мышц

Максимальная аэробная мощность зависит главным образом от плотности митохондрий в мышечных волокнах, концентрации и активности окислительных ферментов, скорости поступления кислорода вглубь волокна. Объем кислорода доступного для окислительных реакций лимитируется, как факторами общей работоспосо






Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...





© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав

0.016 с.