Температурный коэффициент реактивности реактора (ТКР) — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Температурный коэффициент реактивности реактора (ТКР)



Второй мерой воздействия температуры на реактивность реактора является величина температурного коэффициента реактивности реактора.

Температурный коэффициент реактивности реактора при данной средней температуре теплоносителя t т – это изменение реактивности реактора при его разогреве на 1оС сверх этой температуры.

Величина ТКР обозначается как at (t т) иизмеряется в 1/оС или в %/oC.

Обратим внимание на то, что кривые ТЭР в некоторых интервалах средних температур теплоносителя имеют восходящий, а в некоторых – убывающий характер. Интенсивность возрастания или убывания величины ТЭР (и особенно в зоне рабочих средних температур теплоносителя) не может не интересовать практика, так как это – ответная реакция реактора на каждый градус изменения температуры в его активной зоне, которую оператор для поддержания постоянного уровня мощности обязан скомпенсировать (вручную или с помощью средств автоматики) путём введения в активную зону подвижных поглотителей или, наоборот, извлечения их из зоны.

Предположим, реактор разогревается от некоторой температуры t т1 до более высокой температуры t т2 на D t т = t т2 - t т1 градусов, и при этом температурное изменение реактивности реактора составило D rt = rt (t т2) - rt (t т1). Следовательно, среднее температурное изменение реактивности реактора на каждый градус этого интервала составит

Но это – только средняя величина изменения функции rt(t т ) в указанном интервале изменения температур. Локальное же значение этой величины (то есть её значение не в каком–то интервале, а при конкретном значении температуры t т) должно, очевидно, находиться как предел отношения D rt к D t т при стремлении последнего к нулю:

, (10.1.3)

то есть получается, что локальная величина температурного коэффициента реактивности at(t т ) при любой рассматриваемой температуре t т – есть не что иное как первая производная функции температурного эффекта реактивности по средней температуре. Вот почему температурный коэффициент реактивности называют дифференциальной мерой оценки влияния температуры на реактивность, в отличие от температурного эффекта реактивности

(10.1.4)

который является интегральной мерой оценки этого влияния.

Так как первая производная функции, как известно, интерпретируется тангенсом угла наклона касательной в рассматриваемой точке её графика, то положительный знак at при рассматриваемой температуре t т (или в интервале температур dtT около t т) – свидетельство того, что функция rt(tT) в этом интервале с ростом температуры возрастает, а если at < 0, то она, наоборот, - убывает.

Следовательно, на кривых ТЭР I и II типов, изображённых на рис.10.1, в интервалах температур от 20оС до температур, соответствующих максимумам величины ТЭР, величины at положительны, а во всём остальном диапазоне температур – отрицательны. В точках максимума величина at = 0 (как и полагается производной любой функции в точках её экстремума). На кривой ТЭР III типа величина at < 0 во всём диапазоне изменения средних температур теплоносителя.

Оператору довольно часто приходится оценивать температурные изменения реактивности при сравнительно небольших (в пределах нескольких градусов) изменениях средней температуры (Dtт). Кривой ТЭР в этом случае пользоваться неудобно, поскольку она чаще всего вычерчивается в довольно грубом масштабе (5¸10оС на одно деление по оси температур), и попытка визуально снять с кривой ТЭР малое изменение интегральной эффективности может обернуться большой относительной погрешностью из-за недостаточной остроты зрения или недостаточного качества исполнения графика кривой ТЭР. В этом случае для более или менее точного нахождения величины Drt пользуются свойством монотонных функций, что в небольших интервалах изменения аргумента любая монотонная нелинейная зависимость мало отличается от линейной. И находят температурное изменение реактивности по формуле:

Drt» at (t т). D t т (10.1.5)

Разумеется, для этого нужно знать величину at при температуре tт. Поэтому для нахождения Drt при небольших (менее 10оС) изменениях средних температур теплоносителя пользуются формулой (10.1.5), а при больших изменениях температур, в пределах которых нелинейностью функции пренебрегать нельзя, - формулой (10.1.2).

 


Поделиться с друзьями:

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...



© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.01 с.