Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Квантовая физика. Физика атома и атомного ядра

2017-05-14 742
Квантовая физика. Физика атома и атомного ядра 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Предмет и задачи квантовой физики.

Тепловое излучение. Распределение энергии в спектре абсолютно черного тела.

Гипотеза М. Планка о квантах. Фотоэффект. Опыты А.Г. Столетова, законы фотоэффекта. Уравнение А. Эйнштейна для фотоэффекта.

Фотон. Опыты П.Н. Лебедева и С.И. Вавилова. Гипотеза Л. де Бройля о волновых свойствах частиц. Корпускулярно-­волновой дуализм. Дифракция электронов. Давление света. Соотношение неопределенностей Гейзенберга.

Модели строения атома. Объяснение линейчатого спектра водорода на основе квантовых постулатов Н. Бора. Спонтанное и вынужденное излучение света.

Состав и строение атомного ядра. Изотопы. Ядерные силы. Дефект массы и энергия связи ядра.

Закон радиоактивного распада. Ядерные реакции, реакции деления и синтеза. Цепная реакция деления ядер. Ядерная энергетика. Термоядерный синтез.

Элементарные частицы. Фундаментальные взаимодействия. Ускорители элементарных частиц.

Строение Вселенной

Применимость законов физики для объяснения природы космических объектов. Солнечная система. Звезды и источники их энергии. Классификация звезд. Эволюция Солнца и звезд.

Галактика. Другие галактики. Пространственно-временные масштабы наблюдаемой Вселенной. Представление об эволюции Вселенной. Темная материя и темная энергия.

 

Примерный перечень практических и лабораторных работ (на выбор учителя)

Прямые измерения:

– измерение мгновенной скорости с использованием секундомера или компьютера с датчиками;

– сравнение масс (по взаимодействию);

– измерение сил в механике;

– измерение температуры жидкостными и цифровыми термометрами;

– оценка сил взаимодействия молекул (методом отрыва капель);

– измерение термодинамических параметров газа;

– измерение ЭДС источника тока;

– измерение силы взаимодействия катушки с током и магнита помощью электронных весов;

– определение периода обращения двойных звезд (печатные материалы).

 

Косвенные измерения:

– измерение ускорения;

– измерение ускорения свободного падения;

– определение энергии и импульса по тормозному пути;

– измерение удельной теплоты плавления льда;

– измерение напряженности вихревого электрического поля (при наблюдении электромагнитной индукции);

– измерение внутреннего сопротивления источника тока;

– определение показателя преломления среды;

– измерение фокусного расстояния собирающей и рассеивающей линз;

– определение длины световой волны;

– определение импульса и энергии частицы при движении в магнитном поле (по фотографиям).

 

Наблюдение явлений:

– наблюдение механических явлений в инерциальных и неинерциальных системах отсчета;

– наблюдение вынужденных колебаний и резонанса;

– наблюдение диффузии;

– наблюдение явления электромагнитной индукции;

– наблюдение волновых свойств света: дифракция, интерференция, поляризация;

– наблюдение спектров;

– вечерние наблюдения звезд, Луны и планет в телескоп или бинокль.

 

Исследования:

– исследование равноускоренного движения с использованием электронного секундомера или компьютера с датчиками;

– исследование движения тела, брошенного горизонтально;

– исследование центрального удара;

– исследование качения цилиндра по наклонной плоскости;

– исследование движения броуновской частицы (по трекам Перрена);

– исследование изопроцессов;

– исследование изохорного процесса и оценка абсолютного нуля;

– исследование остывания воды;

– исследование зависимости напряжения на полюсах источника тока от силы тока в цепи;

– исследование зависимости силы тока через лампочку от напряжения на ней;

– исследование нагревания воды нагревателем небольшой мощности;

– исследование явления электромагнитной индукции;

– исследование зависимости угла преломления от угла падения;

– исследование зависимости расстояния от линзы до изображения от расстояния от линзы до предмета;

– исследование спектра водорода;

– исследование движения двойных звезд (по печатным материалам).

 

Проверка гипотез (в том числе имеются неверные):

– при движении бруска по наклонной плоскости время перемещения на определенное расстояния тем больше, чем больше масса бруска;

– при движении бруска по наклонной плоскости скорость прямо пропорциональна пути;

– при затухании колебаний амплитуда обратно пропорциональна времени;

– квадрат среднего перемещения броуновской частицы прямо пропорционален времени наблюдения (по трекам Перрена);

– скорость остывания воды линейно зависит от времени остывания;

– напряжение при последовательном включении лампочки и резистора не равно сумме напряжений на лампочке и резисторе;

– угол преломления прямо пропорционален углу падения;

– при плотном сложении двух линз оптические силы складываются;

 

Конструирование технических устройств:

– конструирование наклонной плоскости с заданным КПД;

– конструирование рычажных весов;

– конструирование наклонной плоскости, по которой брусок движется с заданным ускорением;

– конструирование электродвигателя;

– конструирование трансформатора;

– конструирование модели телескопа или микроскопа.

 

Химия

В системе естественно-научного образования химия как учебный предмет занимает важное место в познании законов природы, формировании научной картины мира, химической грамотности, необходимой для повседневной жизни, навыков здорового и безопасного для человека и окружающей его среды образа жизни, а также в воспитании экологической культуры, формировании собственной позиции по отношению к химической информации, получаемой из разных источников.

Успешность изучения учебного предмета связана с овладением основными понятиями химии, научными фактами, законами, теориями, применением полученных знаний при решении практических задач.

В соответствии с ФГОС СОО химия может изучаться на базовом и углубленном уровнях.

Изучение химии на базовом уровне ориентировано на обеспечение общеобразовательной и общекультурной подготовки выпускников.

Содержание базового курса позволяет раскрыть ведущие идеи и отдельные положения, важные в познавательном и мировоззренческом отношении: зависимость свойств веществ от состава и строения; обусловленность применения веществ их свойствами; материальное единство неорганических и органических веществ; возрастающая роль химии в создании новых лекарств и материалов, в экономии сырья, охране окружающей среды.

Изучение химии на углубленном уровне предполагает полное освоение базового курса и включает расширение предметных результатов и содержания, ориентированное на подготовку к последующему профессиональному образованию; развитие индивидуальных способностей обучающихся путем более глубокого, чем это предусматривается базовым курсом, освоения основ наук, систематических знаний; умение применять полученные знания для решения практических и учебно-исследовательских задач в измененной, нестандартной ситуации; умение систематизировать и обобщать полученные знания. Изучение предмета на углубленном уровне позволяет сформировать у обучающихся умение анализировать, прогнозировать и оценивать с позиции экологической безопасности последствия бытовой и производственной деятельности человека, связанной с получением, применением и переработкой веществ.

Изучение предмета «Химия» в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов познания, а также практического применения научных знаний основано на межпредметных связях с предметами областей естественных, математических и гуманитарных наук.

Примерная программа учебного предмета «Химия» составлена на основе модульного принципа построения учебного материала, не определяет количество часов на изучение учебного предмета и классы, в которых предмет может изучаться. Курсивом в примерных учебных программах выделены элементы содержания, относящиеся к результатам, которым обучающиеся «получат возможность научиться».

Примерная программа учитывает возможность получения знаний в том числе через практическую деятельность. В программе содержится примерный перечень практических работ. При составлении рабочей программы учитель вправе выбрать из перечня работы, которые считает наиболее целесообразными, с учетом необходимости достижения предметных результатов.

 

Базовый уровень

Основы органической химии

Появление и развитие органической химии как науки. Предмет органической химии. Место и значение органической химии в системе естественных наук.

Химическое строение как порядок соединения атомов в молекуле согласно их валентности. Основные положения теории химического строения органических соединений А.М. Бутлерова. Углеродный скелет органической молекулы. Кратность химической связи. Зависимость свойств веществ от химического строения молекул. Изомерия и изомеры. Понятие о функциональной группе. Принципы классификации органических соединений. Систематическая международная номенклатура и принципы образования названий органических соединений.

Алканы. Строение молекулы метана. Гомологический ряд алканов. Гомологи. Номенклатура. Изомерия углеродного скелета. Закономерности изменения физических свойств. Химические свойства (на примере метана и этана): реакции замещения (галогенирование), дегидрирования как способы получения важнейших соединений в органическом синтезе. Горение метана как один из основных источников тепла в промышленности и быту. Нахождение в природе и применение алканов. Понятие о циклоалканах.

Алкены. Строение молекулы этилена. Гомологический ряд алкенов. Номенклатура. Изомерия углеродного скелета и положения кратной связи в молекуле. Химические свойства (на примере этилена): реакции присоединения (галогенирование, гидрирование, гидратация, гидрогалогенирование) как способ получения функциональных производных углеводородов, горения. Полимеризация этилена как основное направление его использования. Полиэтилен как крупнотоннажный продукт химического производства. Применение этилена.

Алкадиены и каучуки. Понятие об алкадиенах как углеводородах с двумя двойными связями. Полимеризация дивинила (бутадиена-1,3) как способ получения синтетического каучука. Натуральный и синтетический каучуки. Вулканизация каучука. Резина. Применение каучука и резины.

Алкины. Строение молекулы ацетилена. Гомологический ряд алкинов. Номенклатура. Изомерия углеродного скелета и положения кратной связи в молекуле. Химические свойства (на примере ацетилена): реакции присоединения (галогенирование, гидрирование, гидратация, гидрогалогенирование) как способ получения полимеров и других полезных продуктов. Горение ацетилена как источник высокотемпературного пламени для сварки и резки металлов. Применение ацетилена.

Арены. Бензол как представитель ароматических углеводородов. Строение молекулы бензола. Химические свойства: реакции замещения (галогенирование) как способ получения химических средств защиты растений, присоединения (гидрирование) как доказательство непредельного характера бензола. Реакция горения. Применение бензола.

Спирты. Классификация, номенклатура, изомерия спиртов. Метанол и этанол как представители предельных одноатомных спиртов. Химические свойства (на примере метанола и этанола): взаимодействие с натрием как способ установления наличия гидроксогруппы, реакция с галогеноводородами как способ получения растворителей, дегидратация как способ получения этилена. Реакция горения: спирты как топливо. Применение метанола и этанола. Физиологическое действие метанола и этанола на организм человека. Этиленгликоль и глицерин как представители предельных многоатомных спиртов. Качественная реакция на многоатомные спирты и ее применение для распознавания глицерина в составе косметических средств. Практическое применение этиленгликоля и глицерина.

Фенол. Строение молекулы фенола. Взаимное влияние атомов в молекуле фенола. Химические свойства: взаимодействие с натрием, гидроксидом натрия, бромом. Применение фенола.

Альдегиды. Метаналь (формальдегид) и этаналь (ацетальдегид) как представители предельных альдегидов. Качественные реакции на карбонильную группу (реакция «серебряного зеркала», взаимодействие с гидроксидом меди (II) и их применение для обнаружения предельных альдегидов в промышленных сточных водах. Токсичность альдегидов. Применение формальдегида и ацетальдегида.

Карбоновые кислоты. Уксусная кислота как представитель предельных одноосновных карбоновых кислот. Химические свойства (на примере уксусной кислоты): реакции с металлами, основными оксидами, основаниями и солями как подтверждение сходства с неорганическими кислотами. Реакция этерификации как способ получения сложных эфиров. Применение уксусной кислоты. Представление о высших карбоновых кислотах.

Сложные эфиры и жиры. Сложные эфиры как продукты взаимодействия карбоновых кислот со спиртами. Применение сложных эфиров в пищевой и парфюмерной промышленности. Жиры как сложные эфиры глицерина и высших карбоновых кислот. Растительные и животные жиры, их состав. Распознавание растительных жиров на основании их непредельного характера. Применение жиров. Гидролиз или омыление жиров как способ промышленного получения солей высших карбоновых кислот. Мылá как соли высших карбоновых кислот. Моющие свойства мыла.

Углеводы. Классификация углеводов. Нахождение углеводов в природе. Глюкоза как альдегидоспирт. Брожение глюкозы. Сахароза. Гидролиз сахарозы. Крахмал и целлюлоза как биологические полимеры. Химические свойства крахмала и целлюлозы (гидролиз, качественная реакция с йодом на крахмал и ее применение для обнаружения крахмала в продуктах питания). Применение и биологическая роль углеводов. Понятие об искусственных волокнах на примере ацетатного волокна.

Идентификация органических соединений. Генетическая связь между классами органических соединений. Типы химических реакций в органической химии.

Аминокислоты и белки. Состав и номенклатура. Аминокислоты как амфотерные органические соединения. Пептидная связь. Биологическое значение α-аминокислот. Области применения аминокислот. Белки как природные биополимеры. Состав и строение белков. Химические свойства белков: гидролиз, денатурация. Обнаружение белков при помощи качественных (цветных) реакций. Превращения белков пищи в организме. Биологические функции белков.

Теоретические основы химии

Строение вещества. Современная модель строения атома. Электронная конфигурация атома. Основное и возбужденные состояния атомов. Классификация химических элементов (s-, p-, d-элементы). Особенности строения энергетических уровней атомов d-элементов. Периодическая система химических элементов Д.И. Менделеева. Физический смысл Периодического закона Д.И. Менделеева. Причины и закономерности изменения свойств элементов и их соединений по периодам и группам. Электронная природа химической связи. Электроотрицательность.Виды химической связи (ковалентная, ионная, металлическая, водородная) и механизмы ее образования. Кристаллические и аморфные вещества. Типы кристаллических решеток (атомная, молекулярная, ионная, металлическая). Зависимость физических свойств вещества от типа кристаллической решетки. Причины многообразия веществ.

Химические реакции. Гомогенные и гетерогенные реакции. Скорость реакции, ее зависимость от различных факторов: природы реагирующих веществ, концентрации реагирующих веществ, температуры, площади реакционной поверхности, наличия катализатора. Роль катализаторов в природе и промышленном производстве. Обратимость реакций. Химическое равновесие и его смещение под действием различных факторов (концентрация реагентов или продуктов реакции, давление, температура) для создания оптимальных условий протекания химических процессов. Дисперсные системы. Понятие о коллоидах (золи, гели). Истинные растворы. Реакции в растворах электролитов. рH раствора как показатель кислотности среды. Гидролиз солей. Значение гидролиза в биологических обменных процессах.Окислительно-восстановительные реакции в природе, производственных процессах и жизнедеятельности организмов. Окислительно-восстановительные свойства простых веществ – металлов главных и побочных подгрупп (медь, железо) и неметаллов: водорода, кислорода, галогенов, серы, азота, фосфора, углерода, кремния. Коррозия металлов: виды коррозии, способы защиты металлов от коррозии. Электролиз растворов и расплавов. Применение электролиза в промышленности.

 

Химия и жизнь

Научные методы познания в химии. Источники химической информации. Поиск информации по названиям, идентификаторам, структурным формулам. Моделирование химических процессов и явлений, химический анализ и синтез как методы научного познания.

Химия и здоровье. Лекарства, ферменты, витамины, гормоны, минеральные воды. Проблемы, связанные с применением лекарственных препаратов. Вредные привычки и факторы, разрушающие здоровье (курение, употребление алкоголя, наркомания). Рациональное питание. Пищевые добавки. Основы пищевой химии.

Химия в повседневной жизни. Моющие и чистящие средства. Средства борьбы с бытовыми насекомыми: репелленты, инсектициды. Средства личной гигиены и косметики. Правила безопасной работы с едкими, горючими и токсичными веществами, средствами бытовой химии.

Химия и сельское хозяйство. Минеральные и органические удобрения. Средства защиты растений.

Химия и энергетика. Природные источники углеводородов. Природный и попутный нефтяной газы, их состав и использование. Состав нефти и ее переработка. Нефтепродукты. Октановое число бензина. Охрана окружающей среды при нефтепереработке и транспортировке нефтепродуктов. Альтернативные источники энергии.

Химия в строительстве. Цемент. Бетон.Подбор оптимальных строительных материалов в практической деятельности человека.

Химия и экология. Химическое загрязнение окружающей среды и его последствия. Охрана гидросферы, почвы, атмосферы, флоры и фауны от химического загрязнения.

 

Углубленный уровень

Основы органической химии

Появление и развитие органической химии как науки. Предмет органической химии. Место и значение органической химии в системе естественных наук. Взаимосвязь неорганических и органических веществ.

Химическое строение как порядок соединения атомов в молекуле согласно их валентности. Основные положения теории химического строения органических соединений А.М. Бутлерова. Углеродный скелет органической молекулы. Кратность химической связи. Зависимость свойств веществ от химического строения молекул. Изомерия и изомеры. Понятие о функциональной группе. Принципы классификации органических соединений. Международная номенклатура и принципы образования названий органических соединений.

Классификация и особенности органических реакций. Реакционные центры. Первоначальные понятия о типах и механизмах органических реакций. Гомолитический и гетеролитический разрыв ковалентной химической связи. Свободнорадикальный и ионный механизмы реакции. Понятие о нуклеофиле и электрофиле.

Алканы. Электронное и пространственное строение молекулы метана. sp3- гибридизация орбиталей атомов углерода. Гомологический ряд и общая формула алканов. Систематическая номенклатура алканов и радикалов. Изомерия углеродного скелета. Физические свойства алканов. Закономерности изменения физических свойств. Химические свойства алканов: галогенирование, дегидрирование, термическое разложение, крекинг как способы получения важнейших соединений в органическом синтезе. Горение алканов как один из основных источников тепла в промышленности и быту. Изомеризация как способ получения высокосортного бензина. Механизм реакции свободнорадикального замещения. Получение алканов. Реакция Вюрца. Нахождение в природе и применение алканов.

Циклоалканы. Строение молекул циклоалканов. Общая формула циклоалканов. Номенклатура циклоалканов. Изомерия циклоалканов: углеродного скелета, межклассовая, пространственная (цис-транс- изомерия). Специфика свойств циклоалканов с малым размером цикла. Реакции присоединения и радикального замещения.

Алкены. Электронное и пространственное строение молекулы этилена. sp2- гибридизация орбиталей атомов углерода. s- и p-связи. Гомологический ряд и общая формула алкенов. Номенклатура алкенов. Изомерия алкенов: углеродного скелета, положения кратной связи, пространственная (цис-транс- изомерия), межклассовая. Физические свойства алкенов. Реакции электрофильного присоединения как способ получения функциональных производных углеводородов. Правило Марковникова, его электронное обоснование. Реакции окисления и полимеризации.Полиэтилен как крупнотоннажный продукт химического производства. Промышленные и лабораторные способы получения алкенов. Правило Зайцева. Применение алкенов.

Алкадиены. Классификация алкадиенов по взаимному расположению кратных связей в молекуле. Особенности электронного и пространственного строения сопряженных алкадиенов. Общая формула алкадиенов. Номенклатура и изомерия алкадиенов. Физические свойства алкадиенов. Химические свойства алкадиенов: реакции присоединения (гидрирование, галогенирование), горения и полимеризации. Вклад С.В. Лебедева в получение синтетического каучука. Вулканизация каучука. Резина.Многообразие видов синтетических каучуков, их свойства и применение. Получение алкадиенов.

Алкины. Электронное и пространственное строение молекулы ацетилена. sp­- гибридизация орбиталей атомов углерода. Гомологический ряд и общая формула алкинов. Номенклатура. Изомерия: углеродного скелета, положения кратной связи, межклассовая. Физические свойства алкинов. Химические свойства алкинов: реакции присоединения как способ получения полимеров и других полезных продуктов. Реакции замещения. Горение ацетилена как источник высокотемпературного пламени для сварки и резки металлов. Получение ацетилена пиролизом метана и карбидным методом. Применение ацетилена.

Арены. История открытия бензола. Современные представления об электронном и пространственном строении бензола. Изомерия и номенклатура гомологов бензола. Общая формула аренов. Физические свойства бензола. Химические свойства бензола: реакции электрофильного замещения (нитрование, галогенирование) как способ получения химических средств защиты растений; присоединения (гидрирование, галогенирование) как доказательство непредельного характера бензола. Реакция горения. Получение бензола. Особенности химических свойств толуола. Взаимное влияние атомов в молекуле толуола. Ориентационные эффекты заместителей. Применение гомологов бензола.

Спирты. Классификация, номенклатура спиртов. Гомологический ряд и общая формула предельных одноатомных спиртов. Изомерия. Физические свойства предельных одноатомных спиртов. Водородная связь между молекулами и ее влияние на физические свойства спиртов. Химические свойства: взаимодействие с натрием как способ установления наличия гидроксогруппы, с галогеноводородами как способ получения растворителей, внутри- и межмолекулярная дегидратация. Реакция горения: спирты как топливо. Получение этанола: реакция брожения глюкозы, гидратация этилена. Применение метанола и этанола. Физиологическое действие метанола и этанола на организм человека. Этиленгликоль и глицерин как представители предельных многоатомных спиртов. Качественная реакция на многоатомные спирты и ее применение для распознавания глицерина в составе косметических средств. Практическое применение этиленгликоля и глицерина.

Фенол. Строение молекулы фенола. Взаимное влияние атомов в молекуле фенола. Физические свойства фенола. Химические свойства (реакции с натрием, гидроксидом натрия, бромом). Получение фенола. Применение фенола.

Альдегиды и кетоны. Классификация альдегидов и кетонов. Строение предельных альдегидов. Электронное и пространственное строение карбонильной группы. Гомологический ряд, общая формула, номенклатура и изомерия предельных альдегидов. Физические свойства предельных альдегидов. Химические свойства предельных альдегидов: гидрирование; качественные реакции на карбонильную группу (реакция «серебряного зеркала», взаимодействие с гидроксидом меди (II)) и их применение для обнаружения предельных альдегидов в промышленных сточных водах. Получение предельных альдегидов: окисление спиртов, гидратация ацетилена (реакция Кучерова). Токсичность альдегидов. Применение формальдегида и ацетальдегида. Ацетон как представитель кетонов. Строение молекулы ацетона. Особенности реакции окисления ацетона. Применение ацетона.

Карбоновые кислоты. Классификация и номенклатура карбоновых кислот. Строение предельных одноосновных карбоновых кислот. Электронное и пространственное строение карбоксильной группы. Гомологический ряд и общая формула предельных одноосновных карбоновых кислот. Физические свойства предельных одноосновных карбоновых кислот. Химические свойства предельных одноосновных карбоновых кислот (реакции с металлами, основными оксидами, основаниями и солями) как подтверждение сходства с неорганическими кислотами. Реакция этерификации и ее обратимость. Влияние заместителей в углеводородном радикале на силу карбоновых кислот. Особенности химических свойств муравьиной кислоты. Получение предельных одноосновных карбоновых кислот: окисление алканов, алкенов, первичных спиртов, альдегидов. Важнейшие представители карбоновых кислот: муравьиная, уксусная и бензойная. Высшие предельные и непредельные карбоновые кислоты. Оптическая изомерия. Асимметрический атом углерода. Применение карбоновых кислот.

Сложные эфиры и жиры. Строение и номенклатура сложных эфиров. Межклассовая изомерия с карбоновыми кислотами. Способы получения сложных эфиров. Обратимость реакции этерификации. Применение сложных эфиров в пищевой и парфюмерной промышленности. Жиры как сложные эфиры глицерина и высших карбоновых кислот. Растительные и животные жиры, их состав. Физические свойства жиров. Химические свойства жиров: гидрирование, окисление. Гидролиз или омыление жиров как способ промышленного получения солей высших карбоновых кислот. Применение жиров. Мылá как соли высших карбоновых кислот. Моющие свойства мыла.

Углеводы. Классификация углеводов. Физические свойства и нахождение углеводов в природе. Глюкоза как альдегидоспирт. Химические свойства глюкозы: ацилирование, алкилирование, спиртовое и молочнокислое брожение. Экспериментальные доказательства наличия альдегидной и спиртовых групп в глюкозе. Получение глюкозы. Фруктоза как изомер глюкозы. Рибоза и дезоксирибоза. Важнейшие дисахариды (сахароза, лактоза, мальтоза), их строение и физические свойства. Гидролиз сахарозы, лактозы, мальтозы. Крахмал и целлюлоза как биологические полимеры. Химические свойства крахмала (гидролиз, качественная реакция с йодом на крахмал и ее применение для обнаружения крахмала в продуктах питания). Химические свойства целлюлозы: гидролиз, образование сложных эфиров. Применение и биологическая роль углеводов. Окисление углеводов – источник энергии живых организмов. Понятие об искусственных волокнах на примере ацетатного волокна.

Идентификация органических соединений. Генетическая связь между классами органических соединений.

Амины. Первичные, вторичные, третичные амины. Классификация аминов по типу углеводородного радикала и числу аминогрупп в молекуле. Электронное и пространственное строение предельных аминов. Физические свойства аминов. Амины как органические основания: реакции с водой, кислотами. Реакция горения. Анилин как представитель ароматических аминов. Строение анилина. Причины ослабления основных свойств анилина в сравнении с аминами предельного ряда. Химические свойства анилина: взаимодействие с кислотами, бромной водой, окисление. Получение аминов алкилированием аммиака и восстановлением нитропроизводных углеводородов. Реакция Зинина. Применение аминов в фармацевтической промышленности. Анилин как сырье для производства анилиновых красителей. Синтезы на основе анилина.

Аминокислоты и белки. Состав и номенклатура. Строение аминокислот. Гомологический ряд предельных аминокислот. Изомерия предельных аминокислот. Физические свойства предельных аминокислот. Аминокислоты как амфотерные органические соединения. Синтез пептидов. Пептидная связь. Биологическое значение α -аминокислот. Области применения аминокислот. Белкикак природные биополимеры. Состав и строение белков. Основные аминокислоты, образующие белки. Химические свойства белков: гидролиз, денатурация, качественные (цветные) реакции на белки. Превращения белков пищи в организме. Биологические функции белков. Достижения в изучении строения и синтеза белков.

Азотсодержащие гетероциклические соединения. Пиррол и пиридин: электронное строение, ароматический характер, различие в проявлении основных свойств. Нуклеиновые кислоты: состав и строение. Строение нуклеотидов. Состав нуклеиновых кислот (ДНК, РНК). Роль нуклеиновых кислот в жизнедеятельности организмов.

Высокомолекулярные соединения. Основные понятия высокомолекулярных соединений: мономер, полимер, структурное звено, степень полимеризации. Классификация полимеров. Основные способы получения высокомолекулярных соединений: реакции полимеризации и поликонденсации.Строение и структура полимеров. Зависимость свойств полимеров от строения молекул.Термопластичные и термореактивные полимеры. Проводящие органические полимеры. Композитные материалы. Перспективы использования композитных материалов. Классификация волокон. Синтетические волокна. Полиэфирные и полиамидные волокна, их строение, свойства. Практическое использование волокон. Синтетические пленки: изоляция для проводов, мембраны для опреснения воды, защитные пленки для автомобилей, пластыри, хирургические повязки. Новые технологии дальнейшего совершенствования полимерных материалов.

 

Теоретические основы химии

Строение вещества. Современная модель строения атома. Дуализм электрона. Квантовые числа. Распределение электронов по энергетическим уровням в соответствии с принципом наименьшей энергии, правилом Хунда и принципом Паули. Особенности строения энергетических уровней атомов d-элементов. Электронная конфигурация атома. Классификация химических элементов (s-, p-, d-элементы). Основное и возбужденные состояния атомов. Валентные электроны. Периодическая система химических элементов Д.И. Менделеева. Физический смысл Периодического закона Д.И. Менделеева. Причины и закономерности изменения свойств элементов и их соединений по периодам и группам. Мировоззренческое и научное значение Периодического закона Д.И. Менделеева. Прогнозы Д.И. Менделеева. Открытие новых химических элементов.

Электронная природа химической связи. Электроотрицательность. Ковалентная связь, ее разновидности и механизмы образования (обменный и донорно-акцепторный). Ионная связь. Металлическая связь. Водородная связь. Межмолекулярные взаимодействия.

Кристаллические и аморфные вещества. Типы кристаллических решеток (атомная, молекулярная, ионная, металлическая). Зависимость физических свойств вещества от типа кристаллической решетки. Причины многообразия веществ. Современные представления о строении твердых, жидких и газообразных веществ. Жидкие кристаллы.

Химические реакции. Гомогенные и гетерогенные реакции. Скорость реакции, ее зависимость от различных факторов: природы реагирующих веществ, концентрации реагирующих веществ, температуры(правило Вант-Гоффа), площади реакционной поверхности, наличия катализатора. Энергия активации. Активированный комплекс. Катализаторы и катализ. Роль катализаторов в природе и промышленном производстве.

Понятие об энтальпии и энтропии. Энергия Гиббса. Закон Гесса и следствия из него. Тепловые эффекты химических реакций. Термохимические уравнения. Обратимость реакций. Химическое равновесие. Смещение химического равновесия под действием различных факторов: концентрации реагентов или продуктов реакции, давления, температуры. Роль смещения равновесия в технологических процессах.

Дисперсные системы. Коллоидные системы. Истинные растворы. Растворение как физико-химический процесс. Способы выражения концентрации растворов: массовая доля растворенного вещества, молярная и моляльная концентрации. Титр раствора и титрование.

Реакции в растворах электролитов. Качественные реакции на ионы в растворе. Кислотно-основные взаимодействия в растворах. Амфотерность. Ионное произведение воды. Водородный показатель (pH) раствора. Гидролиз солей. Значение гидролиза в биологических обменных процессах. Применение гидролиза в промышленности.

Окислительно-восстановительные реакции в природе, производственных процессах и жизнедеятельности организмов. Окислительно-восстановительный потенциал среды. Диаграмма Пурбэ. Поведение веществ в средах с разным значением pH. Методы электронного и электронно-ионного баланса. Гальванический элемент. Химические источники тока. Стандартный водородный электрод. Стандартный электродный потенциал системы. Ряд стандартных электродных потенциалов. Направление окислительно-восстановительных реакций. Электролиз растворов и расплавов солей. Практическое применение электролиза для получения щелочных, щелочноземельных металлов и алюминия. Коррозия металлов: виды коррозии, способы защиты металлов от коррозии.

Основы неорганической химии

Общая характеристика элементов IА–IIIA-групп. Оксиды и пероксиды натрия и калия. Распознавание катионов натрия и калия. Соли натрия, калия, кальция и магния, их значение в природе и жизни человека. Жесткость воды и способы ее устранения. Комплексные соединения алюминия. Алюмосиликаты.

Металлы IB–VIIB-групп (медь, цинк, хром, марганец). Особенности строения атомов. Общие физические и химические свойства. Получение и применение. Оксиды и гидроксиды этих металлов, зависимость их свойств от степени окисления элемента. Важнейшие соли. Окислительные свойства солей хрома и марганца в высшей степени окисления. Комплексные соединения хрома.

Общая характеристика элементов IVА-группы. Свойства, получение и применение угля.Синтез-газ как основа современной промышленности. Активированный уголь как адсорбент. Наноструктуры. Мировые достижения в области создания наноматериалов. Электронное строение молекулы угарного газа. Получение и применение угарного газа. Биологическое действие угарного газа.Карбиды кальция, алюминия и железа. Карбонаты и гидрокарбонаты. Круговорот углерода в живой и неживой природе. Качественная реакция на карбонат-ион. Физические и химические свойства кремния. Силаны и силициды. Оксид кремния (IV). Кремниевые кислоты и их соли. Силикатные минералы – основа земной коры.

Общая характеристика элементов VА-группы. Нитриды. Качественная реакция на ион аммония. Азотная кислота как окислитель. Нитраты, их физические и химические свойства, применение. Свойства, получение и применение фосфора. Фосфин. Фосфорные и полифосфорные кислоты. Биологическая роль фосфатов.

Общая характеристика элементов VIА-групп


Поделиться с друзьями:

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.095 с.