Влияние температуры на микроорганизмы. — КиберПедия 

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Влияние температуры на микроорганизмы.

2019-08-01 7271
Влияние температуры на микроорганизмы. 5.00 из 5.00 10 оценок
Заказать работу

Развитие всех микроорганизмов возможно при определенной температуре. Известны микроорганизмы, способные существовать при низких (-8°С и ниже) и при повышенных температурных условиях, например, обитатели горячих источников поддерживают жизнедеятельность при температуре 80-95°С. Большинство микробов предпочитает температурные пределы 15-35°С. Различают:

· оптимальную, наиболее благоприятную для развития температуру;

· максимальную, при которой прекращается развитие микробов данного вида;

· минимальную, ниже которой микробы прекращают развитие.

По отношению к уровню температуры микроорганизмы разделяют на три группы:

· психрофиты – хорошо растут при пониженных температурах,

· мезофиллы – нормально существуют при средних температурах,

· термофилы – существуют при постоянно высоких температурах.

Группа микроорганизмов

Температура развития микроорганизмов, ° С

Минимальная Оптимальная Максимальная
Психрофилы 0-2 15-25 25-35
Мезофилы   25-37 40-45
Термофилы   45-60  

Микробы сравнительно быстро приспосабливаются к значительным изменениям температуры. Поэтому незначительное снижение или повышение уровня температуры не гарантирует прекращения развития микроорганизмов.

Влияние высоких температур.

Температуры, значительно превышающие максимальные, вызывают гибель микроорганизмов. В воде большинство вегетативных форм бактерий при нагревании до 60°С погибают за час; до 70°С — за 10-15 минут, до 100°С — за несколько секунд. В воздухе гибель микроорганизмов наступает при значительно более высокой температуре — до 170°С и выше в течение 1-2 часов. Споровые формы бактерий значительно устойчивее к нагреванию, они могут выдерживать кипячение в течение 4-5 часов.

Методы пастеризации и стерилизации основаны на свойстве микробов погибать под действием высоких температур. Пастеризация — осуществляется при температуре 60-90°С, при этом погибают вегетативные формы клеток, а споровые остаются жизнеспособными. Поэтому пастеризованные продукты следует быстро охлаждать и хранить в условиях охлаждения. Стерилизация — это полное уничтожение всех форм микроорганизмов, включая споровые. Стерилизацию осуществляют при температуре 110-120°С и повышенном давлении.

Однако споры не погибают мгновенно. Даже при 120°С гибель их наступает через 20-30 минут. Стерилизуют пищевые консервы, некоторые медицинские материалы, субстраты, на которых выращивают микроорганизмы в лабораториях. Эффект стерилизации зависит от количественного и качественного состава микрофлоры объекта стерилизации, его химического состава, консистенции, объема, массы и др.

Влияние низких температур.

Чаще всего действие низких температур связано не с гибелью микроорганизмов, а с торможением и прекращением их развития. Низкую температуру микроорганизмы переносят значительно лучше. Многие болезнетворные микробы, попадающие в окружающую среду, способны переносить суровые зимы, не теряя болезнетворности. Наиболее негативно на развитие микроорганизмов влияет температура, при которой замерзает содержимое клетки.

Тормозящее действие низких температур на микробы используют для хранения различных продуктов в охлажденном виде при температуре 0-4°С, и замороженном – при температуре — 6-20°С и ниже. Действие низких температур в замороженных продуктах усиливает влияние повышенного осмотического давления. Поскольку большая часть воды перешла в лед, в оставшейся жидкой части воды оказались все растворенные вещества, содержавшиеся в массе продукта. Это вызывает повышенное осмотическое давление, которое, в свою очередь, тормозит развитие микробов.

Замораживание используют для хранения мяса, рыбы, плодов, овощей полуфабрикатов, кулинарных изделий, готовых блюд и др. Прекращение развития микробов действует только до тех пор, пока продолжается действие низкой температуры. При повышении температуры начинается бурное развитие и размножение микробов, что вызывает порчу пищевых продуктов.

Следовательно, низкая температура только замедляет биохимические процессы, не имея стерилизующего эффекта. Многократное замораживание одних и тех же продуктов способствует быстрому приспособлению микробов к низким температурам и усиливает их жизнеспособность. Поэтому надо предотвращать колебания температуры во время хранения продуктов.

 

20.Психрофилы, мезофилы, термофилы

Бактериальные ор­ганизмы могут существовать и развиваться в весьма широких температур­ных границах.

Различают три экологические группы бактерий по их отношению к температуре окружающей среды: психрофилы, мезофилы, термофилы.

К психрофилам относятся формы, развивающиеся при сравнительно низкой температуре. Оптимум развития у этих бакте­рий лежит при 20—25 °C, а минимум может лежать даже ниже нуля, если эти бактерии развиваются в растворе, замерзающем при температуре ниже нуля.

К мезофильным бактериям относится огромное большинство бакте­рий. Оптимум развития мезофилов лежит при 25—35 °C, максимум — при 45—50 °C и минимум — около 10 °C. Из приведенных для мезофилов тем­пературных границ видно, что эта группа микроорганизмов наиболее соот­ветствует температурам, наблюдающимся в природе в летнее время, и поэтому не удивительно весьма широкое распространение мезофилов в почве, воде и других субстратах.

К термофильным микроорганизмам относятся бактерии и близкие к ним актиномицеты, а также некоторые водоросли, по преимуществу сине-зеленые. Все они характеризуются тем, что развиваются при высоких тем­пературах (40—75 °C). Водоросли и ряд представителей животного мира (моллюски и др.), живущие в горячих источниках и гейзерах, развива­ются при несколько более низких температурах, чем бактерии и актиноми­цеты. Из микроорганизмов к термофилам обычно относятся бациллярные формы, образующие споры, а также группа актиномицетов.

В состоянии спор термофилы хорошо переносят температуры ниже 30 °C, при которых они в вегетирующем состоянии быстро гибнут. Особен­ностью термофилов является их очень интенсивный обмен, благодаря чему они гораздо энергичнее размножаются и значительно быстрее заканчивают осуществляемые ими микробиологические процессы. Клетки термофилов делятся быстрее, чем у мезофилов, и быстрее стареют и отмирают.

 

23 Пастеризация, стерилизация пищевых продуктовПастеризация — однократное

нагревание жидкостей или пищевых продуктов обычно до 60-70°С в течение 15-30 минут. Была открыта в середине XIX века французским микробиологом Луи Пастером. Цель пастеризации — уничтожение болезнетворных микроорганизмов и подавление жизнедеятельности микроорганизмов, вызывающих порчу продуктов. Эффективность пастеризации определяется степенью уничтожения болезнетворной (патогенной) микрофлоры. При пастеризации продукт нагревают до температуры 63-98 °С и выдерживают при этой температуре некоторое время. При такой обработке инактивируются ферменты, погибают вегетативные формы микроорганизмов, но споры остаются в жизнеспособном состоянии и при возникновении благоприятных условий начинают развиваться. Поэтому пастеризованные продукты (молоко, пиво и др.) хранят при пониженных температурах в течение ограниченного периода времени. Пищевая ценность продуктов при пастеризации практически не изменяется. В зависимости от вида и свойств пищевого сырья используют разные режимы пастеризации. Различают длительную (при температуре 63—65°С в течение 30-40 мин), короткую (при температуре 85-90°С в течение 0,5-1 мин) и мгновенную пастеризацию (при температуре 98°С в течение нескольких секунд). Стерилизация — уничтожение всех видов микроорганизмов, включая бактерии и их споры, грибы, вирусы и прионы, находящихся на поверхностях, оборудовании, в пищевых продуктах и лекарствах. Осуществляется термическим, химическим, радиационным, фильтрационным методами. Термическая стерилизация. Как и при пастеризации, в стерилизации существует зависимость между температурой нагрева продукта и продолжительностью выдержки. Иногда применяют дробную стерилизацию, которая заключается в многократном нагреве и охлаждении продукта. Сначала продукт нагревают до 100—150 °C, затем его охлаждают до 35-40 °C и выдерживают при этой температуре 1-2 часа. Это делается для того, чтобы проросли споры. Потом продукт вновь нагревают до 100—110°C, затем опять охлаждают до 35-40 °C и выдерживают 1-2 часа. Так повторяют несколько раз. Эффективность стерилизации характеризуют коэффициентом стерилизующего действия, который представляет собой логарифм отношения начального и конечного количества бактерий в единице объема продукта С = lg(N0/Nк) Биотехнология предст-т собой сов-ть пром-х методов, в кот-х исп-ся живые организмы и биолог-ие процессы для произв-ва разл-х продуктов (хлебопечение, приготовление вина, пива, сыра, способы обработки кожи и т.д.) Биопромышл-ть,в онове которой лежит биотехнология роизводит кормовые и пищевые белки, аминокислоты, ферменты. К важнейшим процессам биотехнологии отн-ся брожение, микробиологический синтез, термическая обработка. Новые направления физико-химической биологии значительно разширили возможности процессов биотехнологии, особенно в генной и клеточной инженерии. Сегодня биотехнология рассм-ся как наука,возникшая на стыке нескольких биологич-х дисциплин: генетики, вирусологии, микробиологии и растениеводства. Она описывает уникальные возм-ти практического использ-ия рез-в в этой области, выдвигает на передний план НТП.

 

24 Отношение микроорганизмов к кислороду: аэробы и анаэробы (облигатные, факультативные).

По своему отношению к кислороду микроорганизмы условно делятся на несколько групп. Облигатные аэробы нуждаются в молекулярном кислороде для окисления питательных веществ и осуществления аэробного дыхания. Это значительная часть микроорганизмов, живущих на различных поверхностях и в верхних слоях почвы и водоемов (например, Micrococcus luteus). При культивировании аэробных микроорганизмов необходимо создать условия доступности молекулярного кислорода, так как его растворимость в воде невелика (при 20оС - 6,2 мл/л). Для этого применяют выращивание в тонком слое среды или обогащение ее кислородом различными способами (перемешивание, барботирование и т.д.).

Среди аэробов выделяют группу микроорганизмов-микроаэрофилов, которым кислород необходим, но в концентрации ниже атмосферной (менее 5%). Такие организмы встречаются на границе анаэробной и аэробной зон в естественных местообитаниях. К ним относятся многие тионовые и железоокисляющие бактерии (в том числе, представители родов Beggiatoa, Galionella), а также пресноводные спириллы (Spirillum volutans).

Факультативные анаэробы способны переключать свой обмен веществ в зависимости от наличия или отсутствия кислорода с аэробного дыхания на анаэробные процессы. Как правило, в присутствии кислорода такие микроорганизмы растут быстрее и накапливают больше биомассы. К факультативным анаэробам относятся Saccharomyces cerevisiae, многие энтеробактерии (E. coli) и бациллы.

Облигатные анаэробы не нуждаются в кислороде для своей жизнедеятельности, более того, в его присутствии происходит угнетение или гибель клеток. В эту группу входят метанобразующие археи, гомоацетогенные бактерии, большинство сульфатредукторов, некоторые грибы и простейшие. При культивировании облигатных анаэробов используют специальные приемы. Кислород удаляют из среды кипячением, сосуды тщательно укупоривают резиновыми пробками с металлическими колпачками, газовую фазу культивационного сосуда заменяют на азот или аргон. Для удаления следовых количеств кислорода в среду вносят восстановители (сульфид натрия) и в дальнейшем поддерживают анаэробные условия, исключая попадание кислорода при пересевах.

Группа аэротолерантных анаэробов также не использует кислород в метаболизме, однако некоторое количество кислорода в среде не влияет на их жизнедеятельность. В эту группу входят молочнокислые бактерии и некоторые патогенные стрептококки (Streptococcus pyogenes).

 

25 Возможность жизни на нашей планете определяется непрерывно протекающим круговоротом основных биогенных элементов (углерода, кислорода, водорода, азота, фосфора, серы и др.). Ведущая роль в процессах трансформации этих элементов принадлежит прокариотам. Приведем характерный пример. Содержание углекислого газа в атмосфере минимально (составляет всего 0,03%), и если бы не происходил постоянный возврат СО2 в атмосферу, этот газ был бы израсходован в процессе фотосинтеза за какие-нибудь 7--40 лет. Дальнейшая жизнь оказалась бы невозможна. Однако этого не происходит. В результате разложения органических соединений различными группами микроорганизмов в атмосферу возвращается 90% углекислого газа, остальные 10% СО2 пополняются в атмосфере за счёт дыхания эукариот, а также за счет хозяйственной деятельности человека.

Помимо углекислого газа, при разложении органических соединений микроорганизмы возвращают в атмосферу и другие газообразные продукты, такие, как Н2, Н2S, N2, СН4. Таким образом, они осуществляют не только деструкцию растительного и животного опада, выполняя роль санитаров планеты, но одновременно регулируют газовый состав атмосферы.

Ведущая роль прокариот в процессах трансформации элементов в биосфере определяется прежде всего огромной численностью микроорганизмов, повсеместным распространением их, а также универсальностью ферментативного аппарата микробной клетки, способной перерабатывать любые вещества субстрата.

Запасы азота в природе очень велики. Он входит в состав всех организмов на Земле. Общее содержание его в организмах составляет более 25 млрд. тонн, большое количество азота находится также в почве. Но еще более грандиозен запас азота в атмосфере: над каждым гектаром почвы поднимается столб воздуха, содержащий около 80000 тонн молекулярного азота. Ежегодно на образование вновь вырастающих растений требуется около 1,5 млрд. тонн азота в форме, доступной для усвоения растениями. Имеющегося в воздухе и почве азота хватило бы для обеспечения урожая, даже при одностороннем использовании, на несколько миллионов лет. Однако растения часто дают низкие урожаи именно из-за недостатка азота в почве. Это объясняется тем, что только небольшая группа азотистых соединений может быть быстро усвоена растениями. Не только свободный азот, но и многие формы связанного азота не могут служить источником азотного питания для растений. Азот, поступающий в виде белковых веществ в почву вместе с остатками растений и животных, совсем не годится для этих целей, он должен быть подвергнут минерализации, а образующийся при этом аммиак должен быть окислен в соли азотистой и азотной кислот. В основе процессов круговорота азота лежат следующие биохимические процессы: гниение белков, разложение мочевины, нитрификация, денитрификация и фиксация атмосферного азота. (8, 159)

Гниение, или аммонификация белков -- микробиологический процесс, при котором под воздействием гнилостных микроорганизмов происходит гидролитическое расщепление белков, поступающих в почву с трупами животных и отмирающими растениями, с образованием промежуточных продуктов (альбумоз, пептонов, амино- и амидокислот), а также дурно пахнущих веществ -- индола, сероводорода, меркаптана, летучих жирных кислот.

Конечным продуктом гидролиза белков и дезаминирования аминокислот является NH3, почему этот процесс и называется аммонификацией белка. Таким образом, при гниении происходит минерализация белковых веществ, которая в зависимости от химического состава белков субстрата, вида гнилостных бактерий и условий их жизнедеятельности может быть полной или не доведенной до конца. При полной минерализации белка образуются СО2, NH3, Н2О, H2S и минеральные соли. При широком доступе кислорода продукты гидролиза белков подвергаются полному окислению, зловонных веществ образуется значительно меньше, чем при анаэробных условиях. Такой процесс называется тлением.

Гниение -- преимущественно анаэробный процесс, при котором полного окисления некоторых продуктов, например жирных кислот, не происходит. Гнилостные микробы широко распространены в почве, воде, воздухе, в животных и растительных организмах. Поэтому любой продукт, не защищенный от них, быстро подвергается гниению. Его вызывают как анаэробные, так и аэробные микроорганизмы, причем они могут действовать и преемственно, и одновременно. Наиболее энергичными возбудителями гниения, сопровождающегося глубоким распадом белка и образованием азотистых и безазотистых соединений (индола, скатола, жирных кислот и др.), являются Bacillus mycoides, B.Mesentericus, а также Clostridium putrificum, C.sporogenes. Последние два -- анаэробы, содержатся в кишечнике и после смерти вызывают зловонное разложение трупов.

Процессы гниения протекают только при наличии условий, благоприятных для жизнедеятельности их возбудителей (влажность, температура и т. п.). В сухой песчаной почве трупы подвергаются мумификации (высушиванию без гниения). Гнилостные процессы происходят и в организме человека, в частности в кишечнике; причиной их являются Е.со1i и другие микробы. По мнению И. И. Мечникова, продукты гниения (скатол, индол и др.), постоянно образующиеся в организме, вызывают хроническую интоксикацию и являются одной из причин преждевременного старения.

Гнилостные процессы протекают также при газовой гангрене: ткани, омертвевшие под влиянием образуемых возбудителями этой болезни экзотоксинов, заселяются гнилостными аэробными и анаэробными бактериями и подвергаются распаду. Некоторые гнилостные процессы используются в промышленности с полезной целью, например при выработке кожи для отделения от нее шерсти -- швицевании.

Исключительное значение процессов гниения заключается в том, что они играют важную роль в естественном самоочищении почвы и воды. Этим пользуются для строительства специальных очистных сооружений (полей ассенизации, орошения и т. п.), для биологической переработки и обезвреживания фекальных нечистот и сточных вод, содержащих много мертвых белковых субстратов. Гниение ведет к обогащению почвы азотистыми продуктами. (13, 250)

Следующим важным этапом круговорота азота, вслед за образованием NH3, является процесс нитрификации, т. е. окисление NH3 вначале в азотистую, а затем в азотную кислоту, соли которых наиболее пригодны для азотного питания растений. Процесс нитрификации вызывается двумя группами открытых С. Н. Виноградским нитрифицирующих бактерий. Нитрозобактерии окисляют NH3 до азотистой кислоты, а нитробактерии окисляют азотистую кислоту в азотную.

Нитрифицирующие бактерии -- строгие аэробы, хемолитотрофы. Энергию окисления они используют для восстановления СО2 в гексозу. Благодаря нитрифицирующим бактериям в почве могут образовываться огромные скопления солей азотной кислоты в виде селитры (в Чили, Перу). Завершая процесс минерализации белковых веществ, нитрифицирующие бактерии играют исключительно важную роль и в процессах самоочищения почвы и воды, и в санитарно-гигиенических устройствах (поля орошения и т. п.). Таким образом, нитрифицирующие бактерии способствуют повышению урожайности почвы благодаря накоплению в ней азотнокислых солей.

Однако в почве происходят и противоположные процессы, т.е. денитрификации, или восстановлений микроорганизмами солей азотной кислоты в соли азотистой кислоты и в другие простые азотистые соединения, вплоть до свободного азота, который, уходит в атмосферу.

Способностью восстанавливать нитраты в нитриты обладает большое количество видов бактерий и грибов.

Денитрифицирующие бактерии (в частности, некоторые виды Pseudomonas) в анаэробных условиях используют денитрификацию как основную форму дыхания. Для них соли азотной и азотистой кислот служат источниками азота. Энергию для своей специфической деятельности денитрифицирующие бактерии получают из органических веществ, которыми богата почва. Денитрифицирующие бактерии наносят вред сельскому хозяйству, так как способствуют обеднению почвы минеральным азотом и переходу свободного азота в атмосферу. Особенно энергично процессы денитрификации развиваются в слежавшейся, плохо аэрируемой почве. Однако убыль азота из почвы, вызванная активностью денитрифицирующих бактерий, компенсируется деятельностью свободноживущих аэробных и анаэробных и клубеньковых азотфиксирующих бактерий. Более 90% азота связывают азотфиксирующие бактерии: на каждый гектар почвы ежегодно от 25 до 300 кг азота привносят только они.

Так, при самом активном участии многих видов микроорганизмов, в природе происходит непрерывный круговорот азота, поддерживающий существование жизни на Земле. (16, 90)

Схема 1 «Круговорот азота».

Процессы распада безазотистых органических веществ обусловлены по преимуществу жизнедеятельностью микроорганизмов, а процессы созидательные -- фотосинтезом зеленых растений, водорослей и фотосинтезирующих бактерий. В основе процессов распада безазотистых органических веществ лежат различные формы брожения, которые постоянно происходят в природе. Брожение - анаэробное дыхание, при котором микроорганизмы используют выделяющуюся энергию для своей жизнедеятельности.

Впервые биологическую природу брожения открыл в 60-х годах 19 в. гениальный французский ученый Луи Пастер. Пастеру удалось на примере молочнокислого, спиртового и маслянокислого брожения доказать, что эти процессы вызываются жизнедеятельностью микроорганизмов. (6, 81)

Спиртовое брожение углеводов вызывают дрожжи (Saccharomyces cerevisiae), некоторые виды бактерий (Sarcina ventriculi) и отдельные представители мукоровых грибов рода Mucor. При спиртовом брожении молекула гексозы распадается на этанол и углекислый газ. В ходе брожения образуется много промежуточных продуктов -- гексозомонофосфат, фруктозодифосфат, фосфотриозы, фосфоглицериновая кислота, фосфопировиноградная кислота, пировиноградная кислота, уксусный альдегид и, наконец, этиловый спирт.

При содержании в сбраживаемом растворе более чем 30% сахара часть его остается неиспользованной, так как при этих условиях образуется до 15% спирта, а при такой концентрации спирт подавляет жизнедеятельность дрожжей. Поэтому натуральные вина содержат не более 15% спирта. Главное преимущество чистых культур дрожжей заключается в том, что брожение виноградного сока протекает и заканчивается быстро, а отсутствие посторонней микрофлоры позволяет получать вина хорошего вкуса и аромата (с хорошим «букетом»). По окончании брожения молодое вино стабилизируют и дают ему созреть. Эти процессы занимают несколько месяцев, а при изготовлении высококачественных красных вин -- даже несколько лет. В течение первого года во многих красных винах происходит второе, спонтанное брожение -- яблочно-молочнокислое, которое вызывается рядом молочнокислых бактерий (Prdiococcus, Leuconostoc). В результате этого яблочная кислота винограда превращается в молочную кислоту и СО2, т. е. дикарбоновая кислота превращается в монокарбоновую, и кислотность вина уменьшается, оно становится высококачественным.

Уксуснокислое брожение -- биологический окислительный процесс, при котором с помощью уксуснокислых бактерий спирт окисляется в уксусную кислоту. Если какую-либо жидкость, содержащую небольшое количество спирта (вино, пиво), оставить открытой, то в ней постепенно появляется уксусная кислота и кожистая пленка (уксусная матка) на поверхности. Уксуснокислые бактерии объединены в род Acetobacter, содержащий ряд видов и подвидов. Этиловый спирт под влиянием уксуснокислых бактерий подвергается окислению, в результате которого вначале образуется уксусный альдегид, а затем -- уксусная кислота. При использовании специальных рас уксуснокислых бактерий максимальный выход уксуса достигает 14,5%. Уксуснокислые бактерии превращают ряд многоатомных спиртов в сахар. Одна из таких реакций используется для получения сорбозы из сорбитола. Сорбоза -- промежуточный продукт синтеза аскорбиновой кислоты. Она применяется в качестве суспендирующего агента при изготовлении многих лекарственных препаратов. Уксуснокислые бактерии могут наносить вред в виноделии и пивоваренной промышленности, вызывая прокисание вина и пива.

Молочнокислое брожение -- широко распространенное биохимическое явление, давно известное на примере скисания молока. Под влиянием молочнокислых бактерий (семейство Lactobacillaceae) лактоза расщепляется на составляющие ее гексозы -- глюкозу и галактозу, которые затем специфическими ферментами превращаются в молочную кислоту. Свертывание молока происходит вследствие того, что молочная кислота отщепляет кальций от казеина, белок превращается в параказеин и выпадает в осадок. Молочнокислые бактерии широко распространены в природе. Они обнаруживаются в молоке, воздухе, на коже, шерсти, в тонком и толстом кишечнике и представлены большим количеством видов палочковидных и кокковидных бактерий, различающихся не только по морфологии, но и физиологическим свойствам (по использованию различных источников углерода и азота).

Маслянокислое брожение также широко встречается в природе. Возбудитель маслянокислого брожения был открыт Л. Пастером. На примере маслянокислого брожения Л. Пастер разработал учение об анаэробах. Типичный представитель бактерий маслянокислого брожения -- азотфиксирующий Clostridium pasteurianum. Маслянокислые бактерии в больших количествах встречаются в почве, навозе, на растениях, в молоке, сыре. Многие из них являются анаэробами и относятся к роду Clostridium.

Маслянокислое брожение -- сложный биохимический процесс расщепления углеводов, в ряде случаев жиров и белков, на масляную кислоту, углекислоту и воду, при этом образуется много побочных продуктов -- уксусная, молочная, пропионовая и другие кислоты.

Из числа других форм брожения чрезвычайно важным является брожение целлюлозы (клетчатки), в которой заложены огромные запасы углерода. Разложение целлюлозы, которая в количественном отношении представляет один из основных компонентов растительных тканей, осуществляется главным образом высоко специализированными в отношении питания аэробными и анаэробными микроорганизмами. Среди аэробных бактерий, расщепляющих целлюлозу, наиболее важны скользящие бактерии рода Cytjphaga. Целлюлоза -- единственное вещество, которое они могут использовать в качестве источника углерода. Цитофаги быстро растворяют и окисляют целлюлозу.

Сера -- составная часть некоторых белков. Одним из конечных продуктов гниения белков является H2S. Сероводород не усваивается высшими растениями. Биохимические превращения серы восстановительного и окислительного порядка осуществляются серобактериями. Для них H2S является источником энергии. Серобактерии окисляют H2S с выделением свободной серы, которая отлагается у них в цитоплазме в виде капель.

В клетках бактерий сера окисляется далее до серной кислоты, образующиеся сульфаты служат прекрасным питательным веществом для высших растений. H2Sв серную кислоту окисляют различные виды пурпурных серобактерий.

Наряду с такими сульфурирующими бактериями в природе не менее широко распространены и десульфурирующие микробы (аналоги денитрифицирующих бактерий), они восстановливают сульфаты, вызывая образование H2S. Выделение H2S десульфурирующими бактериями происходит в глубинах морей, поэтому в Черном море на глубине 2500 м содержание H2S доходит до 6,5 мл в 1 л воды. Значительное накопление H2S в результате биологического восстановления серы наблюдается в целебных грязях, в лиманах и других водоемах. В санитарном отношении серобактерии являются важными агентами начальной стадии биологического очищения сточных вод и разложения органических отбросов, содержащих серу. (2, 14)

С химической стороны круговорот фосфора достаточно прост, поскольку он встречается в живых организмах только в пятивалентном состоянии в виде свободных фосфатных ионов (РО4-3) или в составе органических фосфатных компонентов клетки. Бактерии не способны поглощать большинство органических фосфорсодержащих соединений, свои потребности в фосфоре они удовлетворяют путем поглощения фосфатных ионов, из которых затем синтезируют органические фосфатные соединения. При разложении гнилостными бактериями белковых веществ одновременно с минерализацией азота происходит превращение органического фосфора в фосфатные ионы. Поскольку большая часть фосфатов, несмотря на быстрый круговорот фосфора, находится в виде нерастворимых солей кальция, железа или алюминия, фосфаты также служат фактором, ограничивающим рост растений. Растворимые фосфаты постоянно переносятся из почвы в море вследствие выщелачивания. Этот перенос имеет однонаправленный характер. Лишь небольшая часть фосфатов возвращается на сушу, главным образом в виде отложений гуано морскими птицами. Поэтому доступность фосфатов для растений зависит от непрерывного перевода в раствор нерастворимых фосфатных отложений -- процесса, в котором важную роль играют микроорганизмы. Образуемые ими кислые продукты метаболизма (органические кислоты, а также азотная и серная) растворяют фосфат кальция, а образуемый ими H2S способствует растворению фосфата железа. (3,

 


Поделиться с друзьями:

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.037 с.