Химические преобразователи солнечной энергии — КиберПедия 

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Химические преобразователи солнечной энергии

2019-07-12 148
Химические преобразователи солнечной энергии 0.00 из 5.00 0 оценок
Заказать работу

 

Современная энергетика опирается главным образом на такие источники, в которых запасена солнечная энергия (СЭ). Прежде всего это ископаемые виды топлива, для образования которых требуются миллионы лет. В своей деятельности человечество с постоянно возрастающими темпами растрачивает их поистине гигантский запас. Истощение месторождений нефти, угля и природного газа неизбежно, и, по различным оценкам, время, отпущенное на то, чтобы переключиться на альтернативные источники энергии (солнечную, океаническую, ветровую, вулканическую), составляет 100-150 лет. Большой интерес также представляют поиски химических способов аккумулирования СЭ.

Диапазон использования солнечного излучения чрезвычайно широк. Энергией Солнца питаются высоко температурные установки, концентрирующие поток лучей с помощью зеркал. В качестве аккумуляторов энергии в них используются как физические теплоносители, так и некоторые неорганические вещества, способные к циклическим реакциям термического разложения- синтеза (оксиды, гидраты, сульфаты, карбонаты). Устройства другого типа преобразуют энергию излучения в электрическую, тепловую или энергию химических реакций посредством фотофизических или фотохимических процессов. Среди фотохимических путей преобразования СЭ наиболее значимыми являются следующие:

Фотокаталитическое разложение воды под действием металлокомплексных соединений;

Создание «солнечных фотоэлектролизёров», основанных на фотоэлектронных переносах или фотогальваническом эффекте;

Фотосинтез - наиболее эффективный биохимический способ преобразования энергии Солнца.

Наряду с ними значительный интерес представляют химические системы, способные аккумулировать СЭ в виде энергии напряжения химических связей. Такие системы удовлетворять требованиям, которые относятся как к фотохромному реагенту А и продукту В, так и к параметрам процесса.

 

А ↔ В + ΔН.

 

Основные требования сводятся следующему:

Реагент А должен поглощать свет в УФ и видимых частях спектра (400-650 нм), так как более 50% СЕ, достигающей Земли, распределено в области 300-700 нм. Фотоизомер В, наоборот, не должен поглощать в этой области, чтобы избежать фотоинициирования обратной реакции. Во избежание потерь энергии оба компонента должны быть нелюминесцирующими;

Обратная реакция должна иметь значительный тепловой эффект (>300 Дж/г);

Для длительного сохранения запасённой фотопродуктом В энергии активационный барьер термического перехода В→А должен быть достаточно большим – порядка 100 кДж/моль;

Прямая фотохимическая реакция должна характеризоваться высоким квантовым выходом, обратная подвержена каталитическому ускорению или тепловому инициированию;

Прямой и обратный процессы должны характеризоваться высокими степенями превращения и отсутствием побочных продуктов;

Вещества А и В должны достаточно дешёвыми, доступными, нетоксичными, взрывобезопасными и химически устойчивыми по отношению к атмосферной влаге и воздуху.

Среди органических систем, удовлетворяющих указанным выше условиям, наиболее важными являются следующие:

Валентная изомеризация нитрон – оксазиридин;

Геометрическая (Е)↔(Z) изомеризация производных индиго;

Геометрическая изомеризация N – ацилированных аминов и нитрилов с последующей внутримолекулярной перегруппировкой;

Термически обратимая реакция фотодимеризации производных антрацена.

Циклические реакции фотораспада – термической рекомбинации свойственны и некоторым неорганическим системам, например фоторазложению нитрозилхлорида:

 

NOCl → NO + 1/2Cl

 

Основное преимущество органических систем перед неорганическими связано с возможностью широкого варьирования строения молекул с целью улучшения их спектральных характеристик как аккумуляторов и преобразователей СЭ.

Система норборнадиен – квадрициклан.

Исследования, проводимые в последние годы, указывают на перспективность использования систем, для которых характерна фотоинициируемая валентная изомеризация по типу (2π+2π) – циклоприсоединения. В этих реакциях две π – связи преобразуются в две σ – связи с образованием циклобутанового производного.

Как правило, в подобных системах термодинамическое равновесие полностью смещено в сторону реагента.

Рассмотрим более детально один из наиболее перспективных объектов для такого рода превращений – норборнадиен (бицикло гепта – 2,5 – диен) и его производные. Соединения норборнадиенового ряда могут быть достаточно легко синтезированы по реакции дневного синтеза. Реагентами для получения норборнадиен производных являются крупнотоннажные продукты органического синтеза – циклопентадиен и ацетилен.

Норборнадиен – интересная и во многом уникальная молекула. Это редкий пример 1,4 – диеновых углеводородов, в которых такое расположение двойных связей является наиболее термодинамически устойчивым.


Поделиться с друзьями:

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.