Преобразователи солнечной энергии — КиберПедия 

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Преобразователи солнечной энергии

2019-07-12 151
Преобразователи солнечной энергии 0.00 из 5.00 0 оценок
Заказать работу

СОДЕРЖАНИЕ

 

ВВЕДЕНИЕ

1. ЭНЕРГИЯСОЛНЦА

2. ГЕЛИОУСТАНОВКИ НА ШИРОТЕ 60°

3. ПРЕОБРАЗОВАТЕЛИ СОЛНЕЧНОЙ ЭНЕРГИИ

3.1. Фотоэлектрические преобразователи

3.1.1. Виды фотоэлектрических преобразователей

3.1.2.  Расчет фотоэлектрической системы.

3.1.3.  Немного об инверторах.

3.2.Гелиоэлектростанции.

3.2.1.  Типы гелиоэлектростанций

3.3. Солнечный коллектор.

3.3.1.  Коллектор из Норвегии.

3.3.2. Солнечный коллектор “Альтэн-1”

3.4. Химические преобразователи солнечной энергии

4. КОСМИЧЕСКИЕ СОЛНЕЧНЫЕ ЭЛЕКТРОСТАНЦИИ

4.1.Описание типовой космической электростанции

4.2.Маломасштабная космическая электростанция

4.3.Позволит ли экономика?

5. СОЛНЦЕМОБИЛЬ СЕГОДНЯ.

6. СОЛНЕЧНАЯ ЭНЕРГЕТИКА В СТРАНАХ СНГ

6.1.Некоторые достижения России в этой области

6.1.1.  Мобильная фотоэлектрическая станция

6.1.2.  Портативная система солнечного электропитания

6.1.3.  Солнечная система автономного освещения

6.1.4.  Солнечная водоподъемная установка

6.1.5.  Энергосберегающие вакуумные стеклопакеты

6.2. Солнечная энергия в Крыму

6.3.Крымская солнечная электростанция

7. НЕКОТОРЫЕ МИРОВЫЕ ИЗОБРЕТЕНИЯ

7.1. Солнечная кухня

7.2. Солнечная стена

7.3. Солнечные аксессуары

7.4. Солнечные стирлинги

7.5. Светильники на солнечных батареях

7.6. Опреснитель

7.7. Солнечная печь

7.8.Новый солнечный модуль

8. КАКОВ МИНУС ВО ВСЕМ ЭТОМ?

ЗАКЛЮЧЕНИЕ

ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА


ВВЕДЕНИЕ

Сейчас, как никогда остро встал вопрос, о том, каким будет будущее планеты в энергетическом плане. Что ждет человечество - энергетический голод или энергетическое изобилие? В газетах и различных журналах все чаще и чаще встречаются статьи об энергетическом кризисе. Из-за нефти возникают войны, расцветают и беднеют государства, сменяются правительства. К разряду газетных сенсаций стали относить сообщения о запуске новых установок или о новых изобретениях в области энергетики. Разрабатываются гигантские энергетические программы, осуществление которых потребует громадных усилий и огромных материальных затрат. Уровень материальной, а в конечном счете и духовной культуры людей находится в прямой зависимости от количества энергии, имеющейся в их распоряжении. Чтобы добыть руду, выплавить из нее металл, построить дом, сделать любую вещь, нужно израсходовать энергию. А потребности человека все время растут, да и людей становится все больше. Так за чем же остановка? Ученые и изобретатели уже давно разработали многочисленные способы производства энергии, в первую очередь электрической. Давайте тогда строить все больше и больше электростанций, и энергии будет столько, сколько понадобится! Такое, казалось бы, очевидное решение сложной задачи, оказывается, таит в себе немало подводных камней. Неумолимые законы природы утверждают, что получить энергию, пригодную для использования, можно только за счет ее преобразований из других форм. Вечные двигатели, якобы производящие энергию и ниоткуда ее не берущие, к сожалению, невозможны. А структура мирового энергохозяйства к сегодняшнему дню сложилась таким образом, что четыре из каждых пяти произведенных киловатт получаются в принципе тем же способом, которым пользовался первобытный человек для согревания, то есть при сжигании топлива, или при использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых электростанциях. Правда, способы сжигания топлива стали намного сложнее и совершеннее. Возросшие требования к защите окружающей среды потребовали нового подхода к энергетике. В разработке Энергетической программы приняли участие виднейшие ученые и специалисты различных сфер. С помощью новейших математических моделей электронно-вычислительные машины рассчитали несколько сотен вариантов структуры будущего энергетического баланса. Были найдены принципиальные решения, определившие стратегию развития энергетики на грядущие десятилетия. Хотя в основе энергетики ближайшего будущего по-прежнему останется теплоэнергетика на не возобновляемых ресурсах, структура ее изменится.

К сожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет, израсходованы они будут за сотни. Сегодня в мире стали всерьез задумываться над тем, как не допустить хищнического разграбления земных богатств. Ведь лишь при этом условии запасов топлива может хватить на века. К сожалению, многие нефтедобывающие страны живут сегодняшним днем. Они нещадно расходуют подаренные им природой нефтяные запасы. Сейчас многие из этих стран, особенно в районе Персидского залива, буквально купаются в деньгах, не задумываясь, что через несколько десятков лет эти запасы иссякнут. Что же произойдет тогда, а это рано или поздно случится, когда месторождения нефти и газа будут исчерпаны? Вероятность скорого истощения мировых запасов топлива, а также ухудшение экологической ситуации в мире, (переработка нефти и довольно частые аварии во время ее транспортировки представляют реальную угрозу для окружающей среды) заставили задуматься о других видах топлива, способных заменить нефть и газ. Сейчас в мире все больше ученых инженеров занимаются поисками новых, нетрадиционных источников которые могли бы взять на себя хотя бы часть забот по снабжению человечества энергией.

Отрасли энергетики разнообразны и их можно так охарактеризовать по видам используемых энергоносителей: ядерная, угольная, газовая, мазутная, гидро, ветро, геотермальная, биомассовая, волновая и приливная, градиент-температурная, солнечная.

Мы можем сопоставлять эти отрасли по нескольким показателям: экономическим, экологическим, ресурсным, а также по показателям безопасности и некоторым другим. Исходя из этого сравнения, можно прийти к выводу, что солнечная энергетика, как долгосрочная перспектива, имеет одно из первостепенных значений.

Оценки прямых социальных затрат, связанных с вредным воздействием традиционных электростанций, включая болезни и снижение продолжительности жизни людей, оплату медицинского обслуживания, потери на производстве, снижение урожая, восстановление лесов и ремонт зданий в результате загрязнения воздуха, воды и почвы, дают величину, добавляющую около 75% к уже имеющимся мировым (!) ценам на топливо и энергию. По существу, это затраты всего общества - "экологический налог", который уже, неявно и очень давно, платят граждане своим здоровьем и личными тратами за несовершенство энергетических установок, и этот "налог" наконец должен быть осознан всеми людьми.
Солнечная же энергия, реально поступающая за три дня на территорию Казахстана, превышает энергию всей годовой выработки электроэнергии в нашей стране. Кроме того, солнечная энергетика имеет себе мало равных по экологичности и ресурсной базе.

Таким образом, использование солнечной энергии является одним из весьма перспективных направлений энергетики. Экологичность, возобновимость ресурсов, отсутствие затрат на капремонт фотомодулей как минимум в течение первых 30 лет эксплуатации, в перспективе - снижение стоимости относительно традиционных методов получения электроэнергии - всё это является положительными сторонами солнечной энергетики.

 


1.     ЭНЕРГИЯСОЛНЦА

 

Проблема освоения нетрадиционных и возобновляемых источников энергии становится все более актуальной. Нетрадиционные возобновляемые источники энергии включают солнечную, ветровую, геотермальную энергию, биомассу и энергию Мирового океана.

Двести лет назад человечество помимо энергии самого человека и животных располагало только тремя видами энергии. Источником их было Солнце. Энергия ветра вращала крылья ветряных мельниц, на которых мололи зерно. Для использования энергии воды необходимо было, чтобы вода бежала вниз к морю от расположенного выше истока, где река наполняется за счет выпадающих дождей.

В последнее десятилетие интерес к этим источникам энергии постоянно возрастает, поскольку во многих отношениях они неограниченны. По мере того как поставки топлива становятся менее надежными и более дорогостоящими, эти источники становятся все более привлекательными и более экономичными. Повышение цен на нефть и газ послужило главной причиной того, что человек вновь обратил свое внимание на воду, ветер и Солнце.

В последнее время интерес к проблеме использования солнечной энергии резко возрос, и хотя этот источник также относится к возобновляемым, внимание, уделяемое ему во всем мире, заставляет рассмотреть его возможности отдельно. Потенциальные возможности энергетики, основанной на применении непосредственно солнечного излучения, чрезвычайно велики.

Использование всего 0,0005% энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а 0,5% - полностью покрыть потребности на перспективу.

Солнечная энергия - кинетическая энергия излучения (в основном света), образующаяся в результате реакций в недрах Солнца. Поскольку ее запасы практически неистощимы (астрономы подсчитали, что Солнце будет «гореть» еще несколько миллионов лет), ее относят к возобновляемым энергоресурсам. В естественных экосистемах лишь небольшая часть солнечной энергии поглощается хлорофиллом, содержащимся в листьях растений, и используется для фотосинтеза, т. е. образования органического вещества из углекислого газа и воды. Таким образом, она улавливается и запасается в виде потенциальной энергии органических веществ. За счет их разложения удовлетворяются энергетические потребности всех остальных компонентов экосистем.

Подсчитано, что небольшого процента солнечной энергии вполне достаточно для обеспечения нужд транспорта, промышленности и нашего быта не только сейчас, но и в обозримом будущем. Более того, независимо от того, будем мы ее использовать или нет, на энергетическом балансе Земли и состоянии биосферы это никак не отразится.

Однако солнечная энергия падает на всю поверхность Земли, нигде не достигая особой интенсивности. Потому ее нужно уловить на сравнительно большой площади, сконцентрировать и превратить в такую форму, которую можно использовать для промышленных, бытовых и транспортных нужд. Кроме того, надо уметь запасать солнечную энергию, чтобы поддерживать энергоснабжение и ночью, и в пасмурные дни. Перечисленные трудности и затраты, необходимые для их преодоления, привели к мнению о непрактичности этого энергоресурса, по крайней мере сегодня. Однако во многих случаях проблема преувеличивается. Главное - использовать солнечную энергию так, чтобы ее стоимость была минимальна или вообще равнялась нулю. По мере совершенствования технологий и удорожания традиционных энергоресурсов эта энергия будет находить все новые области применения.

Световое излучение можно улавливать непосредственно, когда оно достигает Земли. Это называется прямым использованием солнечной энергии. Кроме того, она обеспечивает круговорот воды, циркуляцию воздуха и накопление органического вещества в биосфере. Значит, обращаясь к этим энергоресурсам, мы, по сути, занимаемся непрямым использованием солнечной энергии.

Первые попытки использования солнечной энергии на коммерческой основе относятся к 80-м годам ХХ столетия. Крупнейших успехов в этой области добилась фирма Loose industries (США). В 1989г. ею введена в эксплуатацию солнечно-газовая станция мощностью 80 МВт. В Калифорнии в 1994г. введено еще 480 МВт электрической мощности, причем стоимость 1 кВт/ч энергии - 7-8 центов. Это ниже, чем на традиционных станциях. Электростанция в Калифорнии продемонстрировала, что газ и Солнце как основное источники ближайшего будущего способны эффективно дополнять друг друга. В ночное время и зимой энергию дает газ, а летом и в дневное время - Солнце. Эффективный солнечный водонагреватель был изобретен в 1909г.

После второй мировой войны рынок захватили газовые и электрические водонагреватели благодаря доступности природного газа и дешевизне электричества.

Солнце - источник энергии очень большой мощности. Всего 22 дня солнечного сияния по суммарной мощности, приходящей на Землю, равны всем запасам органического топлива на планете.

На практике солнечная радиация может быть преобразована в электроэнергию непосредственно или косвенно. Косвенное преобразование может быть осуществлено путем концентрации радиации с помощью следящих зеркал для превращения воды в пар и последующего использования пара для генерирования электричества обычными способами. Такая система может работать только при прямом освещении солнечными лучами.

Прямое преобразование солнечной энергии в электрическую может быть осуществлено с использованием фотоэлектрического эффекта. Элементы, изготовленные из специального полупроводникового материала, например силикона, при прямом солнечном облучении обнаруживают разность в вольтаже на поверхности, т.е. наличие электрического тока.

Предложен метод использования солнечной энергии без использования системы аккумуляторов, основанный на преобразовании разницы температур на поверхности и в глубине океана в электрическую энергию.

Американские эксперты считают многообещающей солнечную термоэнергию, для производства которой используются солнечные рефлекторы, собирающие и концентрирующие тепло и свет, при посредстве которых нагревается вода. Например, в России, на Ковровском механическом заводе (г. Жуковск), выпускают солнечные тепловые коллекторы для подогрева воды производительностью до 100 тыс. м3 в год.

Стоимость солнечных батарей быстро уменьшается (в 1970 г. 1кВт.ч электроэнергии, вырабатываемой с их помощью стоил 60 долларов, в 1980 г.-1 доллар, сейчас - 20-30 центов). Благодаря этому спрос на солнечные батареи растет на 25% в год, ежегодный объем их продажи превышает (по мощности) 40 МВт. КПД солнечных батарей, достигавший в середине 1970-х гг. в лабораторных условиях 18%, составляет в настоящее время 28,5% для элементов из кристаллического кремния и 35% - из двухслойных пластин из арсенида галлия и антипода галлия. Разработаны многообещающие элементы из тонкопленочных (1-2 мкм) полупроводниковых материалов: хотя их КПД низок (не выше 16% даже в лабораторных условиях), стоимость очень мала (не более 10% стоимости современных солнечных батарей).

Солнечная энергия может быть использована для теплоснабжения (горячего водоснабжения, отопления), сушки различных продуктов и материалов, в сельском хозяйстве, в технологических процессах в промышленности.

Солнечное теплоснабжение получило развитие во многих зарубежных странах. Большинство установок солнечного теплоснабжения оборудовано солнечным коллектором. Только в США эксплуатируются солнечные коллекторы площадь 10 млн. м , что обеспечивает годовую экономию топлива до 1,5 млн. т.

Представляется, что прямое преобразование солнечной энергии станет краеугольным камнем энергической системы. Хотя в настоящее время фотогальванические солнечные системы малоэффективны и получаемая на них энергия в 4 раза дороже гелиотермической, но они тем не менее используются во многих отдаленных районах. Вполне вероятно, что стоимость электроэнергии, получаемой этим способом, быстро снизится. В ближайшее время могут появиться системы с КПД, приближающимся к 20%, а к концу текущего десятилетия ученые надеются довести стоимость 1 кВт. ч электроэнергии до 10 центов.

Энергия Солнца, как полагают эксперты, - квинтэссенция энергетики, поскольку фотоэлектрические установки не оказывают воздействия на природную среду, бесшумны, не имеют движущихся частей, требуют минимального обслуживания, не нуждаются в воде. Их можно монтировать в отдаленных или засушливых районах, мощность таких установок составляет от нескольких ватт (портативные модули для средства связи и измерительных приборов) до многих мегаватт (площадь несколько миллионов квадратных метров).

Технически концентрацию солнечного излучения можно осуществить с помощью различных оптических элементов - зеркал, линз, световодов и др. Основным энергетическим показателем концентратора солнечного излучения является коэффициент концентрации, который определяется как отношение средней плотности сконцентрированного излучения к плотности лучевого потока, который падает на отражающую поверхность при условии точной ориентации на Солнце.

Национальная безопасность любого государства связана с его устойчивым развитием, основой которого является надежное энергообеспечение. Поэтому ученые всего мира работают над разными энергопроектами, изучают возможные энергетические источники, основываясь на их сравнении с нефтью, природным газом и углем, т.е. с невозобновляемыми ресурсами. Их доля в энергообеспечение населения Земли в настоящее время составляет соответственно 37,5- 38,0; 24,5 и 25,5%.

Доля же возобновляемых источников (Солнца, ветра, воды) пока незначительна. В настоящее время ежегодный прирост мировых запасов нефти за счет вновь открываемых месторождений составляет 0,8%, а ежегодный расход - 2%. Тогда нефти хватит до 2007г., а затем наступит энергетический кризис, который негативно отразится н судьбе каждого человека.

Поиски экологически чистых возобновляемых локальных источников энергии, а также новых способов ее передачи не менее актуальны. Известен важный с этой точки зрения аргумент в пользу солнечной энергетики - катастрофически увеличивающийся парниковый эффект. Международное сообщество пришло к единому мнению: главный виновник парникового эффекта - увеличение содержания углекислого газа в атмосфере, что является следствием сжигания углеродного топлива.

Наиболее экономичная возможность использования солнечной энергии - направлять ее на получение вторичных видов энергии в солнечных районах земного шара. Полученное жидкое или газообразное топливо можно будет перекачивать по трубопроводам или перевозить танкерами в другие районы.

Много бедствий в районах газоносных месторождений связано с выбросами сероводорода или продуктов его переработки в атмосферу. Сероводород считается вредной примесью. Сейчас в промышленности сероводород окисляют кислородом воздуха по методу Клауса и получают при этом серу, а водород связывается с кислородом. Для очистки попутного нефтяного газа от сероводорода нами были исследованы свойства алюмосиликатов. Изучено влияние солнечного излучения на пористость и адсорбционные свойства сорбентов. Адсорбент облучали на опытной гелиоустановке с различной длительностью. Установлено, что воздействие концентрированным солнечным излучением при коэффициенте концентрации лучей К=200 приводит к суммарному увеличению пор.

Использование любого вида энергии и производство электроэнергии сопровождаются образованием многих загрязнителей воды и воздуха. И если верно, что любой вид человеческой деятельности неизбежно оказывает вредное воздействие на природу, то степень этого вреда различна. Мы не можем не влиять на среду, в которой живем, поскольку для поддержания жизненных процессов необходимо поглощать и использовать энергию.

Перспективы солнечной энергетики. Использования солнечной энергии может быть полезно в нескольких отношениях. Во-первых, при замене ею ископаемого топлива уменьшается загрязнение воздуха и воды. Во-вторых, замена ископаемого топлива означает сокращение импорта топлива, особенно нефти. В-третьих, заменяя атомное топливо, мы снижаем угрозу распространения атомного оружия. Наконец, солнечные источники могут обеспечить нам некоторую защиту, уменьшая нашу зависимость от бесперебойного снабжения топливам. Несомненно, некоторый ущерб окружающей среде может наноситься также добычей руды, изготовлением аккумуляторных батарей и гораздо большим количеством проводов и линий передачи, необходимых для сбора электроэнергии от многочисленных ее источников. Но в целом, если учесть все затраты на охрану среды, они окажутся очень малыми.

Обзор различных альтернативных источников энергии показывает, что на пороге широкомасштабного промышленного внедрения находятся ветротурбины и солнечные батареи. Если добавить к этому энергосбережение, есть надежда решить встающие энергетические проблемы, таким образом, строительство новых атомных и тепловых электростанций вовсе не обязательно. Что же касается отдаленного будущего, то в первую очередь следует разрабатывать системы запасания энергии, вырабатываемой солнечными и ветровыми станциями.

С точки зрения окружающей среды и устойчивого развития эти альтернативные источники электричества вполне надежны.

За альтернативными источниками энергии стоит наше будущее. Необходимо объединить усилия для борьбы за чистую планету, чистый воздух, чистую воду!

 


2.    ГЕЛИОУСТАНОВКИ НА ШИРОТЕ 60°

Одним из лидеров практического использования энергии Солнца стала Швейцария. Здесь построено примерно 2600 гелиоустановок на кремниевых фото-преобразователях мощностью от 1 до 1000 кВт и солнечных коллекторных устройств для получения тепловой энергии. Программа, получившая наименование «Солар-91» и осуществляемая под лозунгом «За энергонезависимую Швейцарию!», вносит заметный вклад в решение экологических проблем и энергетическую независимость страны импортирующей сегодня более 70 процентов энергии.

Программа «Солар-91» осуществляется практически без поддержки государственного бюджета, в основном, за счет добровольных усилий и средств отдельных граждан, предпринимателей и муниципалитетов. К 2000-му году она предусматривает довести количество гелиоустановок до 3000. Гелиоустановку на кремниевых фотопреобразователях, чаще всего мощностью 2-3 кВт, монтируют на крышах и фасадах зданий. Она занимает примерно 20-30 квадратных метров. Такая установка вырабатывает в год в среднем 2000 кВт/ч электроэнергии, что достаточно для обеспечения бытовых нужд среднего швейцарского дома и зарядки бортовых аккумуляторов электромобиля. Дневной избыток энергии в летнюю пору направляют в электрическую сеть общего пользования. Зимой же, особенно в ночные часы, энергия может быть бесплатно возвращена владельцу гелиоустановки.

Крупные фирмы монтируют на крышах производственных корпусов гелиостанций мощностью до 300 кВт. Одна такая станция может покрыть потребности предприятия в энергии на 50-70%.     

В районах альпийского высокогорья, где нерентабельно прокладывать линии электропередач, строятся автономные гелиоустановки с аккумуляторами.     

Опыт эксплуатации свидетельствует, что Солнце уже в состоянии обеспечить энергопотребности, по меньшей мере, всех жилых зданий в стране. Гелиоустановки, располагаясь на крышах и стенах зданий, на шумозащитных ограждениях автодорог, на транспортных и промышленных сооружениях не требуют для размещения дорогостоящей сельскохозяйственной или городской территории. 

Автономная солнечная установка у поселка Гримзель дает электроэнергию для круглосуточного освещения автодорожного тоннеля. Вблизи города Шур солнечные панели, смонтированные на 700-метровом участке шумозащитного ограждения, ежегодно дают 100 кВт электроэнергии. Солнечные панели мощностью 320 кВт, установленные по заказу фирмы Biral на крыше ее производственного корпуса в Мюнзингене, почти полностью покрывают технологические потребности предприятия в тепле и электроэнергии. 

Современная концепция использования солнечной энергии наиболее полно выражена при строительстве корпусов завода оконного стекла в Арисдорфе, где солнечным панелям общей мощностью 50 кВт еще при проектировании была отведена дополнительная роль элементов перекрытия и оформления фасада.

КПД кремниевых фотопреобразователей при сильном нагреве заметно снижается и, поэтому, под солнечными панелями проложены вентиляционные трубопроводы для прокачки наружного воздуха. Нагретый воздух работает как теплоноситель коллекторных устройств. Темно-синие, искрящиеся на солнце фотопреобразователи на южном и западном фасадах административного корпуса, отдавая в сеть 9 кВт электроэнергии, выполняют роль декоративной облицовки.

 


Немного об инверторах.

Инверторы или преобразователи постоянного тока в переменный ток, предназначены для обеспечения качественного электропитания различной аппаратуры и приборов в условиях отсутствия или низкого качества электросети переменного тока частотой 50 Гц напряжением 220 В, различных аварийных ситуациях и т. п.

Инвертор представляет собой импульсный преобразователь постоянного тока напряжением 12 (24, 48, 60) В в переменный ток со стабилизированным напряжением 220 В частотой 50 Гц. Большинство инверторов имеет на выходе СТАБИЛИЗИРОВАННОЕ напряжение СИНУСОИДАЛЬНОЙ формы, что позволяет использовать их для электропитания практически любого оборудования и приборов.

 Конструктивно инвертор выполнен в виде настольного блока. На передней панели инвертора расположены выключатель работы изделия и индикатор работы преобразователя. На задней панели изделия находятся выводы (клеммы) для подключения источника постоянного тока, например, АКБ, вывод заземления корпуса инвертора, отверстие с креплением вентилятора (охлаждение), трёхполюсная евро розетка для подключения нагрузки.

Стабилизированное напряжение на выходе инвертора позволяет обеспечить качественное электропитание нагрузки при изменениях/колебаниях напряжения на входе, например при разряде АКБ, или колебаниях тока, потребляемого нагрузкой. Гарантированная гальваническая развязка источника постоянного тока на входе и цепи переменного тока с нагрузкой на выходе инвертора позволяют не предпринимать дополнительных мер для обеспечения безопасности работы при использовании различных источников постоянного тока или какого-либо электрооборудования. Принудительное охлаждение силовой части и низкий уровень шума при работе инвертора позволяют, с одной стороны, обеспечить хорошие массогабаритные показатели изделия, с другой стороны, при данном типе охлаждения не создают неудобств при эксплуатации в виде шума.

Ø   Встроенная панель управления с электронным табло

Ø   Потенциометр емкости, который позволяет делать возможным точные регулировки

Ø   Нормализованная планка с подключением по выводам: WE WY STEROW

Ø   Встроенный оборот торможения

Ø   Радиатор с вентилятором

Ø   Эстетичное крепление

Ø   Питание 230 V - 400 V

Ø   Перегрузка 150% - 60s

Ø   Время разбега 0,01...1000 секунд

Ø   Встроенный электрический фильтр, класса А

Ø   Рабочая температура: от -5°C - до +45°C

Ø   Порт RS 485

Ø   Регулирование шага частоты: 0,01 Hz - 1 кHz

Ø   Класс защиты IP 20

Ø  Функционально обеспечивает: повышение, снижение частоты, контроль перегрузки, перегрева.

 

Гелиоэлектростанции.

 

Гелиоэнергетические программы приняты более чем в 70 странах - от северной Скандинавии до выжженных пустынь Африки. Устройства, использующие энергию солнца, разработаны для отопления, освещения и вентиляции зданий, небоскрёбов, опреснения воды, производства электроэнергии. Такие устройства используются в различных технологических процессах. Появились транспортные средства с "солнечным приводом": моторные лодки и яхты, солнцелеты и дирижабли с солнечными панелями. Солнцемобили, вчера сравниваемые с забавным автоаттракционом, сегодня пересекают страны и континенты со скоростью, почти не уступающей обычному автомобилю.

Концентраторы солнечного излучения. С детства многие помнят, что с помощью собирательной линзы от солнечного света можно зажечь бумагу. В промышленных установках линзы не используются: они тяжелы, дороги и трудны в изготовлении. Сфокусировать солнечные лучи можно и с помощью вогнутого зеркала. Оно является основной частью гелиоконцентратора, прибора, в котором параллельные солнечные лучи собираются с помощью вогнутого зеркала. Если в фокус зеркала поместить трубу с водой, то она нагреется. Таков принцип действия солнечных преобразователей прямого действия.

Наиболее эффективно их можно использовать в южных широтах, но и в средней полосе они находят применение. Зеркала в установках используются либо традиционные - стеклянные, либо из полированного алюминия.

Технически концентрацию можно осуществлять с помощью различных оптических элементов- зеркал, линз, световодов и пр., однако при высоких уровнях мощности концентрируемого излучения практически целесообразно использовать лишь зеркальные отражатели.

Основным энергетическим показателем концентратора солнечного излучения является коэффициент концентрации, который определяется как отношение средней плотности сконцентрированного излучения к плотности лучевого потока, падающего на отражающую поверхность при условии точной ориентации на Солнце.

Концентрирующая способность реальных систем значительно ниже Пред (Пред = 46 160), но также определяется прежде всего геометрией концентратора и угловым радиусом солнечного диска. Существенно на неё влияет и отражательная способность зеркальной поверхности, особенно в случае многократных отражений.

Высокопотенциальные системы концентрации должны иметь конфигурацию, близкую к форме поверхностей вращения второго порядка- параболоида, эллипсоида, гиперболоида или полусферы. Только в этом случае может быть достигнута плотность излучения, в сотни и тысячи раз превышающая солнечную постоянную.

Наиболее эффективные концентраторы солнечного излучения имеют форму: цилиндрического параболоида; параболоида вращения;
плоско-линейной линзы Френеля. Параболоидная конфигурация имеет явное преимущество перед другими формами по величине концентрирующей способности. Поэтому именно они столь широко распространены в гелиотехнических системах. Оптимальный угол раскрытия реальных параболоидных концентраторов, в отличие от угла идеального параболоид. концентратора (45град.), близок к 60 град. Солнечная энергия может непосредственно преобразовываться в механическую. Для этого используется двигатель Стирлинга (двигатель внешнего сгорания, пример-паровоз). Если в фокусе параболического зеркала диаметром 1,5 м установить динамический преобразователь, работающий по циклу Стирлинга, получаемой мощности достаточно, чтобы поднимать с глубины 20 метров 2 куб.м. воды в час. В реальных гелиосистемах плоско-линейная линза Френеля используется редко из-за ее высокой стоимости. Первые попытки использования солнечной энергии на широкой коммерческой основе относятся к 80-м годам нашего столетия. Крупнейших успехов в этой области добилась фирма Loose Industries (США). Ею в декабре 1989 года введена в эксплуатацию солнечно-газовая станция мощностью 80 МВт.
Здесь же, в Калифорнии, в 1994 году введено еще 480 МВт электрической мощности, причем, стоимость 1 кВтч энергии - 7...8 центов. Это ниже, чем на большинстве традиционных станций. (Атомные станции США ~ 15 центов за 1Квт.). В ночные часы и зимой энергию дает, в основном, газ, а летом в дневные часы - солнце. Фирма Loose Industries на солнечно-газовой электростанции в Калифорнии использует систему параболоцилиндрических длинных отражателей в виде желоба. В его фокусе проходит труба с теплоносителем - дифенилом, нагреваемым до 350°С.  Желоб поворачивается для слежения за солнцем только вокруг одной оси (а не двух, как плоские гелиостаты). Это позволило упростить систему слежения за солнцем.

На острове Сицилия еще в начале 80-х годов дала ток солнечная электростанция мощностью 1 МВт. Принцип ее работы тоже башенный. Зеркала фокусируют солнечные лучи на приемнике, расположенном на 50-метровой высоте. Там вырабатывается пар с температурой более 600 °С, который приводит в действие традиционную турбину с подключенным к ней генератором тока. Неоспоримо доказано, что на таком принципе могут работать электростанции мощностью 10–20 МВт, а также и гораздо больше, если группировать подобные модули, подсоединяя их друг к другу.

Несколько иного типа электростанция в Алькерии на юге Испании. Ее отличие в том, что сфокусированное на вершину башни солнечное тепло приводит в движение натриевый круговорот, а тот уже нагревает воду до образования пара. У такого варианта ряд преимуществ. Натриевый аккумулятор тепла обеспечивает не только непрерывную работу электростанции, но дает возможность частично накапливать избыточную энергию для работы в пасмурную погоду и ночью. Мощность испанской станции имеет всего 0,5 МВт. Но на ее принципе могут быть созданы куда более крупные – до 300 МВт. В установках этого типа концентрация солнечной анергии настолько высока, что КПД паротурбинного процесса здесь ничуть не хуже, чем на традиционных тепловых электростанциях.

По мнению специалистов, наиболее привлекательной идеей относительно преобразования солнечной энергии является использование фотоэлектрического эффекта в полупроводниках.

Электростанция в Калифорнии продемонстрировала, что газ и солнце, как основные источники энергии ближайшего будущего, способны эффективно дополнять друг друга. Поэтому не случаен вывод, что в качестве партнера солнечной энергии должны выступать различные виды жидкого или газообразного топлива.

 

Типы гелиоэлектростанций

В настоящее время строятся солнечные электростанции в основном двух типов: СЭС башенного типа и СЭС распределенного (модульного) типа.

 Идея, лежащая в основе работы СЭС башенного типа, была высказана более 350 лет назад, однако строительство СЭС этого типа началось только в 1965 г., а в 80-х годах был построен ряд мощных солнечных электростанций в США, Западной Европе, СССР и в других странах.

В 1985 г. в п. Щелкино Крымской области была введена в эксплуатацию первая в СССР солнечная электростанция СЭС-5 электрической мощностью 5 МВт; 1600 гелиостатов (плоских зеркал) площадью 25,5 м2 каждый, имеющих коэффициент отражения 0,71, концентрируют солнечную энергию на центральный приемник в виде открытого цилиндра, установленного на башне высотой 89 м и служащего парогенератором.

 

 

 В башенных СЭС используется центральный приемник с полем гелиостатов, обеспечивающим степень концентрации в несколько тысяч. Система слежения за Солнцем значительно сложна, так как требуется вращение вокруг двух осей. Управление системой осуществляется с помощью ЭВМ. В качестве рабочего тела в тепловом двигателе обычно используется водяной пар с температурой до 550 оС, воздух и другие газы - до 1000 оС, низкокипящие органические жидкости (в том числе фреоны) - до 100 оС, жидкометаллические теплоносители - до 800 оС.

Главным недостатком башенных СЭС являются их высокая стоимость и большая занимаемая площадь. Так, для размещения СЭС мощностью 100 МВт требуется площадь в 200 га, а для АЭС мощностью 1000 МВт - всего 50 га. Башенные СЭС мощностью до 10 МВт нерентабельны, их оптимальная мощность равна 100 МВт, а высота башни 250 м.

В СЭС распределительного (модульного) типа используется большое число модулей, каждый из которых включает параболо-цилиндрический концентратор солнечного излучения и приемник, расположенный в фокусе концентратора и используемый для нагрева рабочей жидкости, подаваемой в тепловой двигатель, который соединен с электрогенератором. Самая крупная СЭС этого типа построена в США и имеет мощность 12,5 МВт.

При небольшой мощности СЭС модульного типа более экономичны чем башенные. В СЭС модульного типа обычно используются линейные концентраторы солнечной энергии с максимальной степенью концентрации около 100.

В соответствии с прогнозом в будущем СЭС займут площадь 13 млн. км2 на суше и 18 млн. км2 в океане.

СЭС на базе солнечных прудов значительно дешевле СЭС других типов, так как они не требуют зеркальных отражателей со сложной системой ориентаци


Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.073 с.