Незнайкин очарован супергетеродином — КиберПедия 

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Незнайкин очарован супергетеродином

2019-07-12 171
Незнайкин очарован супергетеродином 0.00 из 5.00 0 оценок
Заказать работу

Л. – Успокойся, я тебе не открыл еще одного из главных преимуществ супергетеродина: цепи усилителя промежуточной частоты настроены раз и навсегда на одну и ту же постоянную частоту. Гетеродин настраивают так, чтобы для каждой принимаемой частоты его ток, складываясь с током антенны, давал всегда одну и ту же результирующую частоту, равную промежуточной.

Н. – Я думаю, что числовой пример здесь не будет лишним.

Л. – Допустим, что мы имеем супергетеродин, каскады промежуточной частоты которого настроены на частоту 465 кгц. Чтобы принять сигнал передающей станции с частотой 600 кгц (волна 500 м), необходимо настроить гетеродин на частоту 1 065 кгц; тогда результирующая частота будет равна разности составляющих частот: 1 065–600 = 465 кгц.

Чтобы принять другой сигнал с частотой 850 кгц надо настроить гетеродин на частоту 1 315 кгц; тогда мы снова получим 1 315 – 850 = 465 кгц.

Н. – Теперь мне кажется, что я понял. В результате контуры настройки усилителя промежуточной частоты совсем не надо настраивать каждый раз при переходе от одной станции к другой. Я думаю, что поэтому нам и не надо применять конденсаторы переменной емкости, потому что настройка контуров не меняется. Следовательно, в супергетеродине имеются только два контура, требующих настройки: входной контур (настраиваемый на принимаемый сигнал) и контур гетеродина (который надо настраивать на частоту, большую или меньшую, чем принимаемый сигнал, на величину промежуточной частоты).

Таким образом, настройка оказывается очень простой.

Л. – Еще проще, чем ты думаешь. Оба конденсатора обычно управляются одной и той же ручкой. При этом разность частот настройки постоянна, независимо от положения роторов конденсаторов.

Н. – Но каким образом осуществляют практически наложение двух колебаний?

Л. – Существует тысяча и один способ преобразования частоты, принцип действия которых примерно один и тот же. Поэтому достаточно рассмотреть основные и особенно наиболее распространенные.

Одна из наиболее старых схем (рис. 93) хорошо иллюстрирует принцип работы супергетеродина. В контур L2C2 гетеродина на отдельной лампе Л2 включена маленькая катушка связи L3, которая индуктивно связана с катушкой L1 входного контура. Благодаря этой связи колебания гетеродина вводятся в контур Л1С1. Таким образом, на сетку лампы Л1, одновременно подаются два переменных напряжения: напряжение, возбуждаемое в антенне, и напряжение от гетеродина. Лампа Л1 работает как анодный детектор благодаря смещению за счет сопротивления в ее катоде. В результате детектирования двух колебаний, поданных на сетку лампы Л1, образуется промежуточная частота.

Схема приемника включает также два каскада усиления промежуточной частоты (Л3 и Л4) с настроенной трансформаторной связью, затем детектор (Л5) и усилитель низкой частоты (Л6).

 

 

Pиc. 93. Схема супергетеродина с гетеродином на отдельной лампе.

 

Н. – Рассматривая схему, я вижу, что цепи настройки усилителя промежуточной частоты имеют шесть колебательных контуров. Думаю, что в результате этого приемник должен иметь огромную избирательность.

Л. – Конечно. В этом состоит еще одно преимущество супергетеродина. В приемниках прямого усиления на высокой частоте нельзя увеличивать число настраивающихся контуров, хотя бы из‑за трудности одновременной настройки их конденсаторами переменной емкости. В то же время в супергетеродинах ничто не мешает увеличению числа колебательных контуров, потому что их настройка, по крайней мере в каскадах усиления промежуточной частоты, является неизменной.

Н. – Я чувствую, что очарован преимуществами приемника с преобразованием частоты. Могу я начать строить приемник по схеме, приведенной на рис. 93?

 

 

 

СЕТКИ РАЗМНОЖАЮТСЯ

Л. – И не мечтай. Эта схема полна недостатков. Уже давно не подводят к одному электроду лампы два колебания, а также избегают такой сильной связи между входным колебательным контуром и контуром гетеродина.

Н. – Сильная связь имеет недостатки?

Л. – Да, и серьезные. Так как разница в настройке контуров незначительна, гетеродин может начать генерировать колебания не на частоте контура L2C2, а на частоте входного контура L1C1; тогда не будет происходить преобразования частоты.

Это явление называют затягиванием колебаний.

 

 

Н. – Как это неприятно. Но я не вижу другого способа наложения колебаний, кроме индуктивной связи между контурами входа и гетеродина.

Л. – Способ заключается в применении многосеточных ламп, в простейшем случае с двумя сетками. Колебания гетеродина подаются на первую сетку (рис. 94), а колебания принимаемого сигнала – на вторую. Таким образом, одновременно два колебания действуют на анодный ток, который и будет являться результирующим. Ты видишь, что в этой схеме нет индуктивной связи между контурами L1C1 и L2C2.

 

 

Рис. 94.  Преобразование частоты с помощью двухсеточной лампы Л1 и гетеродина с лампой Л2.

 

Н. – Действительно. Два колебания действуют на анодный ток независимо одно от другого.

Л. – Эта схема, когда‑то очень популярная, сейчас уже тоже не применяется. Ее основным недостатком, помимо прочих, является сильная паразитная связь между колебательными контурами, обусловленная…

Н. – Я догадываюсь: емкостью между обеими сетками. Это так?

Л. – Ты прав. И поскольку ты так удачно угадываешь мои мысли, попробуй найти выход из положения.

Н. – Это легко. Достаточно поместить между сетками разделительную переборку, иными словами экранирующую сетку.

Л. – Еще более совершенный способ заключается в том, что одну из сеток, в частности сетку гетеродина, помещают между двумя экранирующими сетками и добавляют к тому же противодинатронную сетку.

Н. – На рис. 95 видно, что такой сеткой, образующей бутерброд, является ближайшая к аноду. Впрочем, я не усматриваю в этом каких‑либо неудобств. Как же называется такая лампа с семью электродами?

Л. – Это гексод. Обе экранирующие сетки считаются за одну, и поэтому насчитывают шесть электродов. А по‑гречески гекса – это шесть. С такой лампой можно не опасаться паразитных связей между приемным контуром и контуром гетеродина, работающим на триоде. При этом можно без всяких опасений разместить триод в одной колбе с гексодом и использовать для обеих ламп общий катод. Подобный триод‑гексод находит наибольшее применение в современных приемниках.

 

 

Рис. 95. Значительно более совершенная схема преобразования частоты на гексоде.

 

Н. – Из рис. 95 можно заключить, что обе экранирующие сетки соединены между собой в самой колбе.

Л. – Это закономерно, так как напряжение на обеих сетках одинаково и подбирается с помощью гасящего резистора R, заблокированного конденсатором С.

 

 

 

В ЦАРСТВЕ СЕТОК

Н. – Триод‑гексод является очень сложной системой, содержащей восемь электродов. Нельзя ли составить из них одну систему электродов вместо того, чтобы располагать рядом две системы? Так, например, можно было бы уменьшить размеры анода триода так, чтобы этого было достаточно лишь для самовозбуждения гетеродина. Электронный поток при этом свободно проходил бы к следующим электродам, входящим в систему гексода: к первой экранирующей сетке, к сетке, на которую подается принимаемый сигнал….

Л. – и которую называют управляющей

Н. – Благодарю! И, наконец, ко второй экранирующей сетке и к аноду.

Л. – Ты только что, дорогой Незнайкин, повторно изобрел гептод (лампу с семью электродами). И если ты добавишь еще противодинатронную сетку, ты получишь октод – Лампу с восемью электродами (рис. 96).

 

 

Рис. 96. Схема преобразования частоты на октоде.

 

Н. – И такая лампа существует?

Л. – Лучше сказать существовала, так как в настоящее время отказываются и от гептодов и от октодов, предпочитая триод‑гексоды, обеспечивающие наименьшую связь между принимаемыми сигналами и колебаниями гетеродина.

Н. – Я совершенно подавлен таким изобилием сеток. Чтобы как‑то разобраться во всем этом, я попытаюсь сам сформулировать роль различных электродов октода:

1) катод, служащий, очевидно, для излучения электронов;

2) первая сетка местного гетеродина;

3) маленький анод гетеродина;

4) первая экранирующая сетка, предназначенная для устранения паразитной емкости между гетеродинной сеткой и сигнальной сеткой, на которую подаются колебания из антенны;

5) сетка, к которой приложены колебания антенны;

6) вторая экранирующая сетка, предназначенная для ускорения движения электронов;

7) защитная сетка, мешающая вторичным электронам возвращаться с анода на вторую экранирующую сетку;

8) анод, с которого снимается результирующий ток промежуточной частоты.

Л. – Отлично. Я вижу, что ты в этом правильно разобрался.

Н. – Но я все же не понимаю, как сами электроны ориентируются во всех этих сетках и не ошибаются дорогой.

 

 

Беседа семнадцатаая

 

 

Незнайкин долго размышлял о супергетеродине и нашел в нем крупный дефект. К счастью, Любознайкин легко преодолевает препятствия. В результате нашим друзьям удается изобразить практически осуществимую схему. Чтобы закончить беседу. Любознайкин излагает своему ученику принцип действия и устройства различных громкоговорителей. Но на этом беседы еще не заканчиваются…

 

ИСТОРИЯ ОДНОГО РАЗБОЙНИКА

Незнайкин. – Я с трудом мысленно переварил то, что узнал о супергетеродине. К счастью, моя эрудиция в области древней истории помогла мне в этом.

Любознайкин. – Клянусь октодом, я не вижу какой‑либо связи между…

Н. – Не нервничай. Супергетеродин напоминает мне эдакого симпатичного гангстера античности, которого звали Прокруст. Обладая глубоко развитым чувством гостеприимства, он укладывал своих гостей на железную кровать и отрезал им ноги, если они были длиннее кровати. Если же они не достигали края кровати, то он их вытягивал.

Л. – Да, история этого античного разбойника мне известна, но…

 

 

Н. – Разве не тот же принцип лежит и в основе супергетеродина? Ведь какова бы ни была частота принимаемого сигнала, ее стараются изменить так, чтобы получать всегда одну и ту же постоянную частоту, т. е. ту, на которую настроены контуры усилителя промежуточной частоты.

Л. – Ты прав, Незнайкин. Супергетеродин – настоящее прокрустово ложе для частот различных передатчиков.

Н. – Не знаю, правильно ли я понял принцип работы супергетеродина, но одно обстоятельство меня очень беспокоит.

Л. – Что же именно, дружище?

Н. – Предположим, что промежуточная частота равна 100 кгц и что мы хотим слушать передачу на частоте 1 Мгц. Для этого гетеродин надо настроить на 900 кгц, так как разность между двумя составляющими частотами будет точно 100 кгц. Но предположим теперь, что другая станция работает на частоте 800 кгц и ее сигнал также попадает на смесительную лампу. Эта частота, складываясь с частотой гетеродина, создаст результирующую частоту тоже 100 кгц Следовательно, она также будет усиливаться в каскадах усиления промежуточной частоты и будет слышна в громкоговорителе.

Л. – Твои рассуждения правильны. Действительно, для каждой частоты местного гетеродина имеются две частоты входного сигнала, которые дают одну и ту же промежуточную частоту; один сигнал имеет частоту выше, чем частота гетеродина, а другой – ниже. Их называют зеркальными частотами.

Н. – Но это очень тоскливо слушать две передачи сразу.

 

 

Л. – Полностью с тобою согласен. Однако и тут есть средство: надо сделать так, чтобы на смесительную лампу попадала только та из частот, которая нужна.

Ты, наверное, заметил, что интервал между двумя зеркальными частотами равен удвоенному значению промежуточной частоты. Если выбрать достаточно высокую промежуточную частоту, например 465 кгц, то зеркальные частоты окажутся разнесенными на 930 кгц. При этом достаточно иметь хорошую избирательность по входной цепи, чтобы полностью исключить возможность зеркального приема. Для этого на входе приемника используют контур с высокой избирательностью, который называют преселектором. Другой вариант состоит в том, что мешающую частоту устраняют при помощи каскада предварительного усиления высокой частоты с избирательными контурами.

 

 

Н. – Я предпочитаю последний способ. Мне кажется, что перед тем как преобразовать приходящий из антенны сигнал, ослабленный длинным путешествием от передатчика к приемнику, его хорошо немного усилить…

Не думаешь ли ты, что теперь, когда мы уже столько знаем о супергетеродине, пришла пора подумать о приемнике для твоей тетушки, ведь она так долго его ждет. Можешь ли ты нарисовать схему?

 

 

ТЕТУШКИН ПРИЕМНИК

Л. – Вот она, полностью вычерченная (рис. 97). Ты видишь в общих чертах, что она состоит из предварительного каскада усиления высокой частоты на лампе Л1, преобразователя на октоде Л2, каскада усиления промежуточной частоты на пентоде Л3, каскадов детектирования и предварительного усиления низкой частоты на комбинированной лампе‑триоде Л4 и, наконец, выходного оконечного каскада усиления низкой частоты на низкочастотном пентоде Л5.

Все эти элементы схемы в отдельности тебе уже хорошо знакомы, включая и блок питания от сети переменного тока с кенотроном Л6.

 

 

 

ИСТОРИЯ ГРОМКОГОВОРИТЕЛЯ

Н. – Не совсем так, дружище. На твоей схеме я вижу незнакомую мне цепь с загадочной надписью АРУ. Да и о громкоговорителе ты мне ничего не рассказывал.

Л. – Ты не спеши, Незнайкин. АРУ – это одно из усовершенствований, улучшающих работу приемника. Но об этом мы поговорим после того, как познакомимся с устройствами и работой громкоговорителя.

Н. – Я полагаю, что он подобен телефонным наушникам, но в нем применяются более мощные магниты и большак мембрана.

Л. – Именно так и были устроены первые громкоговорители. А для увеличения громкости звука их снабжали длинным рупором в виде лебединой шеи, заимствованным от старинного фонографа (рис. 98). Звук походил на лязг железа, но первые слушатели были восхищены и этим. В таких громкоговорителях маленькая стальная мембрана выполняла сразу две функции: она преобразовывала низкочастотные колебания электрического тока в механические колебания и, сообщая эти колебания окружающему воздуху, создавала звуковые волны.

 

 

Рис. 98. Устройство электромагнитного громкоговорителя с рупором.

 

Н. – Это уж слишком много для бедного кусочка стали.

Л. – То же самое вынуждены были признать и техники. Поэтому функции были разделены: универсальная мембрана была заменена гибкой стальной пластинкой, вибрирующей под влиянием переменного электромагнитного поля, и большой конической мембраной – диффузором – из бумаги или другого такого же легкого материала (рис. 99).

Диффузор соединялся с вибратором при помощи тонкого стержня, по которому вибрации пластинки передавались диффузору, а затем и большой массе воздуха.

 

 

Рис. 99. Электромагнитный громкоговоритель с коническим диффузором.

 

 

Н. – Мне кажется, что это очень хорошо. Почему же ты говоришь об этих громкоговорителях в прошедшем времени?

Л. – Потому что такие громкоговорители больше уже не применяются из‑за одного серьезного недостатка. Речь идет о слишком малой амплитуде колебаний вибрирующей пластинки. При слишком сильной вибрации пластинка ударялась о полюсы магнитов.

Н. – А разве нельзя было ее укрепить подальше от магнитов?

Л. – Увеличение расстояния приводило к уменьшению силы магнитного поля, а следовательно, и к уменьшению амплитуды вибрации. Благодаря твоему предложению мы оказываемся между двух огней.

Н. – Изобрели ли, однако, какую‑либо систему, свободную от этих недостатков?

 

 

 


Поделиться с друзьями:

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.06 с.