Глава 11. История, написанная повсюду в нас — КиберПедия 

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Глава 11. История, написанная повсюду в нас

2019-05-27 132
Глава 11. История, написанная повсюду в нас 0.00 из 5.00 0 оценок
Заказать работу

 

Я начал эту книгу, представив профессора латыни, который вынужден тратить время и энергию, защищая предположение, что римляне и их язык когда-либо существовали.

Давайте вернемся к этой мысли и спросим, каковы действительные свидетельства в пользу Римской Империи и Латинского языка.

Я живу в Британии, где, как и в остальной Европе, Рим оставил свою подпись повсюду на карте, вырезав свои пути в ландшафте, вплел свой язык в наш и свою историю в нашу литературу.

Пройдите вдоль стены Адриана, чье предпочитаемое местное название — «Римская стена».

Пройдите, как ходили мы воскресенье за воскресением, парами от моей школы в (относительно) новом Салисбери к Римскому каменному форту Старого Сарума и пообщайтесь с воображаемыми призраками мертвых легионов.

Раскройте карту Англии картографического управления.

Где бы вы ни увидели длинную, жутко прямую дорогу, особенно когда выдаются зеленые промежутки полей между отрезками больших и проселочных дорог, которые вы можете выровнять по линейке, вы почти всегда найдете римское наименование неподалеку.

Остатки Римской Империи всюду вокруг нас.

Живые организмы тоже имеют историю, записанную повсюду в них.

Они ощетинились биологическим эквивалентом римских дорог, стен, монументов, глиняных черепков и даже древних надписей, вписанных в живую ДНК, готовую быть расшифрованной исследователями.

Ощетинились? Да, буквально.

Когда вам холодно или вы жутко напуганы, или впечатлены бесподобным искусством сонетов Шекспира, у вас проявляется гусиная кожа.

Почему? Потому, что ваши предки были обычными млекопитающими с шерстью повсюду, и она поднималась и опускалась под чутким руководством системы терморегуляции тела.

Слишком холодно, и волосы выпрямлялись, утолщая захваченный слой изолирующего воздуха.

Слишком жарко, и мех опускался, чтобы позволить теплу лучше отводиться.

В более поздней эволюции система поднятия волосков была перехвачена для целей социальной коммуникации и оказалась задействованной в «Выражении эмоций», и Дарвин был первым, кто оценил это в книге с таким названием.

Я не могу удержаться, чтобы не поделиться несколькими строками — зрелого Дарвина — из той книги:

«М-р Сёттон, один из культурных сторожей Зоологического сада, внимательно наблюдал по моему поручению за шимпанзе и орангутаном; он утверждает, что при внезапном испуге, например, во время грозы, а также когда их дразнят и они сердятся, у них поднимается шерсть.

Я видел одного шимпанзе, который испугался при виде черного угольщика; шерсть на всем его теле стала дыбом…

Я поместил в клетку обезьян чучело змеи, и тотчас у нескольких видов обезьян шерсть стала дыбом…

Когда я показал чучело змеи одному пеккари, то у него удивительным образом взъерошилась шерсть вдоль спины; то же самое наблюдается у кабана в состоянии ярости.»

Загривок ощетинивается при гневе.

При испуге, волосы встают для того, чтобы увеличить видимый размер тела и испугать опасных соперников или хищников.

Даже мы, голые обезьяны, по-прежнему имеем оборудование для поднятия не существующей (или едва существующей) шерсти, и мы называем ее гусиной кожей.

Оборудование поднятия волосков — это рудимент, нефункциональный реликт чего-то, что выполняло полезные функции у наших давно умерших предков.

Рудиментарные волосы — это один из многих примеров записей истории, написанной везде в нас.

Они представляют собой убедительное свидетельство того, что эволюция имела место, и снова речь идет не об ископаемых, а о современных животных.

Как мы видели в предыдущей главе, где я сравнил дельфина с близкой по размерам рыбой, такой как дорадо, вам не придется копать очень глубоко внутрь него, чтобы вскрыть его историю жизни на суше.

Несмотря на его обтекаемую, подобную рыбе внешность, и несмотря на тот факт, что теперь свою жизнедеятельность он полностью проводит в море и вскоре бы умер на берегу, у дельфина, а не у дорадо, «наземное млекопитающее» вплетено в самую его основу.

Он имеет легкие, а не жабры, и утонет, как и любое наземное животное, если есть препятствие для доступа воздуха, хотя он может задерживать свое дыхание гораздо дольше, чем наземное млекопитающее.

Его воздушный дыхательный аппарат изменился множеством способов, чтобы соответствовать его водному миру.

Вместо того, чтобы дышать как любое нормальное наземное млекопитающее через две небольших ноздри на кончике его носа, у него единственная ноздря на верху его головы, позволяющая ему дышать, едва высовываясь над поверхностью.

Это «дыхало» имеет герметичный непроницаемый клапан, предохраняющий от попадания воды и сводящий к минимуму время, необходимое для дыхания.

В 1845 году в сообщении Королевского общества, которое Дарвин, как его член, вполне вероятно читал, эсквайр Фрэнсис Сибсон писал: «мышцы, которые открывают и закрывают дыхало, и которые действуют на различные мешочки, формируют один из наиболее сложных и наиболее изящно прилаженных частей аппарата, которые только представляют природа и искусство.

Дыхало дельфина идет на большие ухищрения, чтобы исправить проблемы, которые никогда не возникли бы вообще, если бы он дышал жабрами, как рыбы.

И многие из деталей дыхала можно рассматривать как исправления ко вторичным проблемам, которые возникли, когда воздухозаборник мигрировал от ноздрей к макушке.

Настоящий проектировщик с самого начала бы запланировал его на макушке, если бы он все таки не решил пойти иным путем, отбросить легкие и перейти на жабры.

В этой главе мы будем непрерывно находить примеры эволюции, исправляющей начальную «ошибку» или реликт истории компенсирующими или подправляющими заплатками, а не возвращаясь к назад к чертёжной доске, как поступил бы настоящий проектировщик.

В любом случае, тщательно продуманный и сложный вход в дыхало — красноречивое доказательство отдаленного сухопутного происхождения дельфина.

Можно сказать, что бесчисленными другими способами в дельфинах и китах вдоль и поперек записана их древняя история, как остатки римских дорог, вытянутых в идеально прямые проселочные дороги на карте Англии.

У китов нет задних лап, но есть крошечные кости, похороненные глубоко в них, которые являются остатками тазового пояса и задних лап их давно ушедших ходячих предков.

То же самое относится к сиренам или морским коровам (я уже упоминал о них несколько раз: ламантины, дюгони и 7 метровая морская корова Стеллера, истребленная человеком).

Сирены очень отличаются от китов и дельфинов, но они всего лишь другая группа полностью морских млекопитающих, которые никогда не выходят на берег.

Там где дельфины — быстрые, активные интеллектуальные хищники, ламантины и дюгони — медленные, мечтательные травоядные животные.

В аквариуме ламантинов, который я посетил в западной Флориде, единственный раз я не возмущался против громкоговорителей, играющих музыку.

Это была сонная музыка лагуны, и она казалась такой ленивой, соответствующей, что все было прощено.

Ламантины и дюгони легко плавают в гидростатическом равновесии, не с помощью рыбьего плавательного пузыря (см. ниже), а посредством того, что оснащены тяжелыми костями в противовес естественной плавучести их жира.

Их удельный вес поэтому очень близок к плотности воды, и они могут делать точную подстройку, сжимая или расширяя грудную клетку.

Точность их контроля плавучести улучшена наличием отдельной полости для каждого легкого: они имеют две независимые диафрагмы.

Дельфины и киты, дюгони и ламантины рожают детенышей как все млекопитающие.

Живорождение не является специфическим только для млекопитающих.

Многие рыбы живородящи, но они делают это совершенно по-другому (на самом деле имея восхитительный ряд очень различных способов, без сомнения, эволюционировавших независимо).

Плацента дельфина явно принадлежит млекопитающему, как и обыкновение выкармливать детенышей молоком.

Его мозг — также вне всякого сомнения мозг млекопитающего, и очень продвинутого млекопитающего.

Кора головного мозга млекопитающих представляет собой слой из серого вещества, покрывающего наружную поверхность мозга.

Частично мозговитость состоит в увеличении области этого слоя.

Это может быть сделано за счет увеличения общего размера мозга, и черепа, его заключающего.

Но есть минусы в наличии большого черепа.

Во-первых, он делает роды тяжелее.

В результате мозговитые млекопитающие умудряются увеличивать область слоя, оставаясь в рамках, установленных черепом, и они делают это, сложив весь этот слой в глубокие складки и борозды.

Вот почему человеческий мозг так похож на морщинистый грецкий орех; и мозги дельфинов и китов — единственные конкуренты нам и обезьянам в морщинистости.

Мозги рыбы не имеют складок вообще.

На самом деле, у них нет коры головного мозга, и весь мозг является крошечным по сравнению с мозгом дельфина или человека.

История Дельфина как млекопитающего глубоко впечатана в складчатую поверхность его мозга.

Это часть его млекопитающей сущности, наряду с плацентой, молоком, четырехкамерным сердцем, нижней челюстью, имеющей только одну кость, теплокровностью, и многих других специфических особенностей млекопитающих.

 

Мозг человека (вверху), дельфина (в центре), озерной форели (вне шкалы)

 

Теплокровные — это те, которых мы называем млекопитающими и птицами, а то что у них есть на самом деле, это способность поддерживать свою температуру постоянной, независимо от внешней температуры.

Это хорошая идея, потому что все химические реакции в клетке могут быть оптимизированы для работы при определенной оптимальной температуре.

«Холоднокровные» животные не обязательно холодны.

Кровь ящерицы будет теплее, чем у млекопитающего, если оба окажутся на солнце в полдень в пустыне Сахара.

У ящерицы более холодная кровь, чем у млекопитающего, если они находятся в снегу.

У млекопитающего постоянная температура, и он должно упорно трудиться, чтобы сохранять ее постоянной, используя внутренние механизмы.

Ящерицы используют внешние средства регулирования температуры своего тела, перемещаясь на солнце, когда они нуждаются в согреве, и в тень, когда им нужно охладиться.

Млекопитающие регулируют свою температуру тела более точно, и дельфины не исключение.

Еще раз, история млекопитающего написана повсюду в них, даже при том, что они вернулись к жизни в море, где большинство существ не поддерживает постоянную температуру.

 

Некогда гордые крылья

 

Тела китов и морских коров изобилуют историческими реликтами, которые мы замечаем, потому что они живут в другой среде, чем их сухопутные предки.

Подобный принцип относится к птицам, которые потеряли обыкновение и оборудование для полета.

Не все птицы летают, но все птицы несут по крайней мере реликты аппарата для полета.

Страусы и эму — быстрые бегуны, которые никогда не летают, но у них есть остатки крыльев как наследство их отдаленных летающих предков.

Более того, страусиные остатки крыльев не полностью потеряли свою полезность.

Хотя они слишком малы, чтобы с их помощью летать, они, похоже, выполняют некоторую роль в поддержании баланса и рулении при беге, и участвуют в социальных и сексуальных демонстрация.

Крылья киви слишком малы, чтобы быть заметными за тонким слоем птичьих перьев, но остатки костей крыла имеются.

Моа потеряли крылья полностью.

В их родной Новой Зеландии, между прочим, есть более чем обычное количество нелетающих птиц, вероятно потому, что отсутствие млекопитающих оставило широко открытые ниши для заполнения любыми существами, которые бы смогли попасть туда полетом.

Но эти летающие пионеры, прибыв на крыльях, позже потеряли их, когда заполняли приземные вакантные роли млекопитающих.

Это, вероятно, не относится к моа, предки которого, по-видимому, были уже нелетающими прежде, чем большой южный континент Гондвана распался на фрагменты, среди которых была и Новая Зеландия, каждый несущий свой собственный груз животных Гондваны.

Это наверняка относится к какапо, новозеландским нелетающим попугаям, чьи летучие предки, по-видимому, жили так недавно, что какапо до сих пор пытаются летать, хотя и не имеют оборудования, чтобы достичь успеха в этом.

Словами бессмертного Дугласа Адамса из книги «Last Chance to See» [«Последний шанс увидеть»], это чрезвычайно толстая птица.

Взрослый какапо весит около шести или семи фунтов, а его крылья годны лишь для того, чтобы немного помахать ими, когда ему кажется, что он может обо что-то споткнуться, но о полете не может быть и речи.

К сожалению, он, похоже, не только забыл как летать, но и забыл, что он забыл как летать.

Сильно взволнованный какапо иногда вскарабкивается на дерево и прыгает оттуда, после чего он летит как кирпич и обрушивается на землю неуклюжей грудой.

В то время как страусы, эму и нанду — великие бегуны, пингвины и галапагосские нелетающие бакланы — великие пловцы.

Мне довелось поплавать с бескрылым бакланом в большом горном пруду на острове Изабела, и я был очарован, став очевидцем скорости и проворства, с которым он отыскивал одну подводную расщелину за другой, оставаясь под водой столь долгое время, что захватывало дыхание (у меня было преимущество трубки).

В отличие от пингвинов, которые используют свои короткие крылья, чтобы «летать под водой», Галапагосские бакланы движутся благодаря своим сильным ногам и огромным перепончатым ступням, используя свои крылья только как стабилизаторы.

Но все нелетающие птицы, включая страусов и их родственников, которые потеряли свои крылья очень давно, явно происходят от предков, которые использовали их для полета.

Никакой здравомыслящий наблюдатель не мог бы серьезно сомневаться в истинности этого, что означает, что любой, кто подумает об этом, должен признать очень трудным (почему не невозможным?) сомневаться в факте эволюции.

Многочисленные различные группы насекомых также потеряли крылья или очень их уменьшили.

В отличие от просто бескрылых насекомых, таких как чешуйница, блохи и вши потеряли крылья, которые когда-то имели их предки.

Самки непарного шелкопряда имеют слаборазвитые мускулы крыльев и не летают.

Они не нуждаются в них, поскольку самцы летят к ним, привлекаемые химической приманкой, которую они могут обнаружить в поразительно низкой концентрации.

Если бы самки перемещались так же как и самцы, система, вероятно, не работала бы, поскольку к тому времени, когда самец долетал бы вдоль медленно дрейфующего химического градиента, его источник уже переместился бы дальше!

В отличие от большинства насекомых, у которых четыре крыла, мухи, как предполагает их латинское имя Diptera [Двукрылые], имеют только два.

Вторая пара крыльев уменьшилась до пары «жужжальцев».

Они раскачиваются подобно очень высокоскоростным индийским булавам, которых они напоминают, функционирующих как крошечные гироскопы.

Откуда мы знаем, что жужжальца произошли от крыльев предков? Есть несколько причин.

Они занимают в точности то же место в третьем сегменте грудного отдела, что занимает летательное крыло во втором грудном сегменте (а у других насекомых и в третьем тоже).

Они движутся по той же «восьмерке», как и крылья мух.

У них та же эмбриология, что и у крыльев, и, хотя они крошечные, если на них тщательно посмотреть, особенно в период развития, можно увидеть, что они — недоразвитые крылья и явно модифицированы — если Вы не являетесь отрицателем эволюции — из их предковых крыльев.

Как свидетельство той же истории, существуют мутантные плодовые мушки, так называемые гомеотические мутанты, чья эмбриология аномальна, которые выращивают не жужжальца, а вторую пару крыльев, как у пчел или любого другого вида насекомых.

 

Жужжальца у долгоножки

 

На что могли быть похожи промежуточные стадии между крыльями и жужжальцами, и почему естественный отбор благоприятствовал промежуточным формам? Какова польза от половины жужжальца?

Дж. У.С.Прингл, мой старый Оксфордский профессор, чье непривлекательное выражение лица и неуклюжее поведение принесло ему прозвище «Смеющийся Джон», главным образом отвественнен за раскрытие того, как работают жужжальца.

Он указал, что в основании всех крыльев насекомых есть крошечные органы восприятия, распознающие скручивание и другие силы.

Органы восприятия у основания жужжалец очень похожи — другая часть свидетельства, что жужжальца являются модифицированными крыльями.

Задолго до того, как эволюционировали жужжальца, информация, текущая в нервную систему от органов восприятия в их основании, приспособила быстро снующие крылья действовать в качестве рудиментарных гироскопов.

То, насколько любой летательный аппарат по природе неустойчив, должно компенсироваться сложными приборами, например гироскопами.

Весь вопрос эволюции устойчивых и неустойчивых летунов очень интересен.

Посмотрите на этих двух птерозавров, вымерших летающих рептилий, современников динозавров.

Любой аэроинженер мог бы сказать Вам, что рамфоринх, древний птерозавр на рисунке сверху, должно быть, был устойчивым летуном, из-за своего длинного хвоста с ракеткой для пинг-понга на конце.

Рамфоринх не нуждался в сложном гироскопическом контроле, таком как у мух с их жужжальцами, потому что его хвост делал его устойчивым по своей сути.

С другой стороны, как мог бы сказать тот же инженер, он не был очень маневренным.

В любом летательном аппарате существует оптимальное соотношение между стабильностью и маневренностью.

Великий Джон Мейнард Смит, работавший проектировщиком самолетов, прежде чем возвратиться в университет давать лекции по зоологии (на том основании, что самолеты были шумными и старомодными), указывал, что летающие животные могут перемещаться в течение эволюционного времени назад и вперед вдоль спектра своих оптимальных соотношений, иногда теряя врожденную стабильность в интересах увеличения маневренности, но платя за это увеличением вычислительных и измерительных мощностей — мощностью мозга.

На нижнем рисунке на предыдущей странице представлена анхангера, поздний птеродактиль из Меловой эры, приблизительно на 60 миллионами лет более поздний, чем юрской рамфоринх.

У анхангеры вообще почти не было хвоста, как у современной летучей мыши.

Подобно летучей мыши, это, конечно, был неустойчивый летательный аппарат, зависящий от измерительного и вычислительного оборудования, чтобы осуществлять утонченный, постоянный контроль над его несущими поверхностями.

 

Rhamphorhynchus (вверху) и Anhanguera (внизу)

 

У анхангеры, конечно, не было жужжалец.

Она должна была использовать другие органы чувств, чтобы предоставлять аналогичную информацию, вероятно, полукружные каналы внутреннего уха.

Они действительно были очень большими у этих рассмотренных птерозавров — хотя, немного неутешительно для гипотезы Мейнарда Смита, они были большими и у рамфоринха, и у анхангеры.

Но, возвращаясь к мухам, Прингл предполагает, что у четырехкрылых предков мух, вероятно, были длинные брюшки, что делало их устойчивыми.

Все четыре крыла действовали как рудиментарные гироскопы.

Затем, полагает он, предки мух начали двигаться вдоль диапазона стабильности, становясь более маневренными и менее устойчивыми, поскольку брюшко стало короче.

Задние крылья начали изменяться больше в сторону гироскопической функции (которую они всегда выполняли, скромно, в качестве крыльев), становясь меньшими и более тяжелыми для своего размера, в то время как передние крылья увеличились, чтобы взять на себя больше функции полета.

Существовал плавный континуум изменений по мере того, как передние крылья все больше брали на себя бремя авиации, тогда как задние крылья съеживались, перенимая функции авионики.

Рабочие муравьи утратили свои крылья, но не способность выращивать крылья.

Их крылатая история все еще скрывается внутри них.

Мы знаем это, потому что у муравьиной матки (и у самцов) есть крылья, а рабочие являются самками, которые могут быть матками, но которые, по экологическим, не генетическим, причинам не смогли ими стать.

По-видимому, рабочие муравьи потеряли свои крылья в ходе эволюции, потому что они являются помехой и мешают при подземном образе жизни.

Горькое свидетельство этого предоставляют муравьиные королевы, которые используют свои крылья лишь однажды, чтобы вылететь из родного гнезда, найти самца, а затем приступить к рытью норы для нового гнезда.

Когда они начинают свою новую подземную жизнь, первое, что они делают, это теряют свои крылья, в некоторых случаях буквально откусывая их: болезненное (возможно; кто знает?) свидетельство того, что крылья под землей являются помехой.

Неудивительно, что рабочие муравьи изначально никогда не отращивают крылья.

 

Паразитная муха семейства Phoridae

 

Вероятно, по схожим причинам, гнезда муравьев и термитов являются домом для полчищ бескрылых прихлебателей многих различных типов, питающихся роскошными объедками, собранными постоянно шуршащим потоками возвращающихся фуражиров.

И крылья для них — такая же помеха, как и для самих муравьев.

Кто бы мог когда-либо поверить, что чудовище справа — муха?

Все же мы знаем благодаря тщательному и детальному исследованию его анатомии, что это не просто муха, а что этот паразит термитников принадлежит к конкретному семейству мух, горбаткам.

На следующей странице — более нормальный член того же семейства, который, по-видимому, несколько напоминает крылатых предков странного бескрылого существа выше, хотя он также является паразитом общественных насекомых — в данном случае пчел.

Вы можете видеть схожесть с серповидной головой фантастического монстра на предыдущей странице.

И недоразвитые крылья монстра едва видны как крошечные треугольники с обеих сторон.

 

Другая муха семейства Phoridae

 

Существует дополнительная причина для бескрылости у этого сброда притаившихся и незаконных жильцов в гнездах муравьев и термитов.

Многие из них (не мухи-горбатки) за эволюционное время приобрели защитное сходство с муравьями, дурача или муравьев, или потенциальных хищников (или обоих), которые иначе могли бы различить их среди менее вкусных и лучше защищенных муравьев.

Кто, кинув лишь случайный взгляд, заметил бы, что насекомое ниже, живущее в гнездах муравьев, является вообще не муравьем, а жуком? Снова же, откуда мы знаем?

Исходя из глубоких и детальных сходств с жуками, сходств, намного превосходящих внешние черты, в которых насекомое напоминает муравья: точно так же, как мы знаем, что дельфин является млекопитающим, а не рыбой.

На этом существе повсюду написано его жучиное происхождение, кроме (снова же, как с дельфинами) тех признаков, которые определяют его внешний вид, таких как его бескрылость и его муравьиные очертания.

 

Жук, замаскированный как муравей

 

Потерянные глаза

 

Как муравьи и их подземные товарищи теряют свои крылья под землей, так же и многочисленные другие разновидности животных, живущие в глубинах темных пещер, где нет никакого света, уменьшили или потеряли свои глаза, и, как отмечал сам Дарвин, практически полностью слепы.

Слово «троглобит» было выдумано для животного, живущего исключительно в самых темных местах пещер, и столь специализированных, что они больше нигде не могут жить.

Троглобиты включают саламандр, рыб, креветок, раков, многоножек, пауков, сверчков и многих других животных.

Очень часто они белые, потеряв всю пигментацию, и слепые.

Однако обычно они сохраняют остатки глаз, и в этом — смысл упоминания их здесь.

Рудиментарные глаза — свидетельство эволюции.

Учитывая, что пещерная саламандра живет в кромешной темноте и поэтому не нуждается в глазах, зачем божественному создателю было нужно все-таки снабжать ее фиктивными глазами, явно родственными глазам, но нефункциональными?

Эволюционисты, со своей стороны, должны придумать объяснение потере глаз, где они больше не нужны.

Почему, можно было бы сказать, просто не оставить глаза, даже если Вы никогда их не используете?

Разве они не могли бы пригодиться в некоторый момент в будущем? Зачем «утруждаться» избавляться от них?

Заметьте, между прочим, как трудно противиться языку намерений, целей и персонификации.

Строго говоря, я не должен был использовать слово «утруждаться», не так ли?

Я должен был сказать что-то вроде: «Что делает потерю глаз выгодной для отдельной пещерной саламандры так, чтобы она выживала и размножалась с большей вероятностью, чем конкурирующая саламандра, сохранившая совершенную пару глаз, даже при том, что она никогда их не использует?»

Что ж, глаза почти наверняка не бесплатны.

Отставив в сторону скромные экономические затраты создания глаза, влажная глазная ямка, которая должна быть открытой для мира, чтобы содержать вращающееся глазное яблоко с его прозрачной поверхностью, могла быть уязвимой для инфекции.

Таким образом пещерная саламандра, запечатавшая свои глаза за плотной кожей тела, могла бы выживать лучше, чем конкурирующая особь, сохранившая глаза.

Но есть другой способ ответить на этот вопрос, и, поучительно, он не прибегает к языку преимущества вообще, уже не говоря о цели или персонификации.

Когда мы говорим о естественном отборе, мы думаем в терминах редких выгодных мутаций, появляющихся и положительно поддерживаемых отбором.

Но большинство мутаций неблагоприятны, хотя бы только потому, что они случайны, и есть намного больше способов стать хуже, чем способов стать лучше.

Естественный отбор быстро штрафует плохие мутации.

Особи, обладающие ими, с большей вероятностью будут умирать и с меньшей вероятностью воспроизводиться, и это автоматически удаляет такие мутации из генофонда.

Каждый геном животного и растения подвергается постоянной бомбардировке вредными мутациями: ливню износа.

Это немного похоже на поверхность луны, которая становится все более и более изъеденной кратерами из-за постоянной бомбардировки метеоритами.

За редкими исключениями, каждый раз, когда ген, связанный, например, с глазом, поражается вредоносной мутацией, глаз становится немного менее функциональным, немного менее способным видеть, немного менее достойным названия глаза.

У животного, которое живет на свету и использует зрение, такие вредные мутации (большинство) быстро удаляются из генофонда естественным отбором.

Но в полной темноте не штрафуются вредные мутации, бомбардирующие гены создания глаза.

Зрение невозможно так или иначе.

Глаз пещерной саламандры похож на луну, изъеденную мутационными кратерами, которые никогда не удаляются.

Глаз живущей в свете дня саламандры похож на Землю, поражаемую мутациями с той же интенсивностью, что и глаза пещерных жителей, но каждая вредная мутация (кратер) стирается естественным отбором (эрозией).

Конечно, история глаза пещерного жителя не только негативна: положительный отбор вмешивается также, благоприятствуя росту защитной кожи над уязвимыми ямками оптически ухудшающихся глаз.

Среди наиболее интересных исторических реликтов есть черты, которые используются для чего-то (и таким образом не являются пережитками в смысле того, что пережили свое целевое назначение), но которые кажутся плохо разработанными для своей цели.

Глаз позвоночного в своем лучшем случае, скажем у ястреба или человека, это превосходный точный инструмент, способный на чудеса высокого разрешения, конкурирующий с лучшими приборами от Цейсса и Никона.

Будь это не так, Цейсс и Никон напрасно бы тратили время, производя фотографии высокого разрешения для наших глаз.

С другой стороны, Германн фон Гельмгольц, великий германский ученый 19 века (вы можете назвать его физиком, но его вклад в биологию и психологию еще больше), сказал о глазе:

«Если бы оптик хотел бы продать мне инструмент, которые имел бы столько таких дефектов, я бы счел полностью обоснованным обвинить его в небрежности в сильных выражениях и вернул бы инструмент назад.»

Одна из причин, по которым глаз кажется лучше, чем его оценил физик Гельмгольц, в том, что позже мозг выполняет удивительную работу по улучшению изображения, как ультра-сложный автоматический фотошоп.

Что касается оптики, человеческий глаз достигает качества Цейсса/Никона только в фовеальной области — центральной части сетчатки, которую мы используем для чтения.

Когда мы сканируем сцену, мы передвигаем фовеальную область в разные части изображения, видя каждую в максимальной четкости и деталях, и мозговой «фотошоп» обманывает нас, заставляя думать, что мы видим всю сцену в одном и том же качестве детализации.

Высококачественные Цейссы и Никоны между тем на самом деле отражают всю сцену с почти одинаковой четкостью.

Итак, то, чего не хватает глазу в области оптики, мозг дополняет при помощи своего утонченного программного обеспечения для симуляции изображений.

Но я еще не упомянул наиболее зияющего примера несовершенства в оптике.

Сетчатка вывернута наизнанку.

Представьте, что инженер представил бы позднему Гельмгольцу цифровую камеру с экраном из крошечных фотоэлементов, собранную для съемки изображений, проецируемых на поверхность экрана.

Довольно разумно и очевидно, что каждый фотоэлемент имеет провод, соединенный с компьютером, где собирается изображение.

Снова же, довольно разумно.

Гельмгольц не отправил бы его обратно.

Но теперь, представьте, что я скажу вам, что фотоэлементы глаза направлены назад, в обратную сторону от сцены, на которую смотрят.

«Провода» соединяющие светочувствительные клетки с мозгом идут через всю поверхность сетчатки, так что световые лучи должны пройти через ковер собравшихся проводков перед тем, как попасть на светочувствительные клетки.

Это неразумно, но все и того хуже.

Одно из последствий того, что светочувствительные клетки направлены назад — то, что провода, передающие данные от них, должны как-то пройти через сетчатку назад к мозгу.

В глазу позвоночного они собираются к особому отверстию в сетчатке, где ныряют сквозь нее.

Отверстие, заполненное нервами, называется слепым пятном, поскольку оно не видит, но «пятно» — это слишком мягко сказано, поскольку оно весьма велико, скорее, как слепая область, что тем не менее не является слишком большим неудобством для нас благодаря «автоматическому фотошопу» мозга.

И снова, верните его [инструмент] назад, он не просто плохо спроектирован, это дизайн полного идиота.

 

Часть «фотоэлементов» (палочки и колбочки)

 

Или нет? Будь это так, глаз бы ужасно видел, но это не так.

Он, в действительности, очень хорош.

Он хорош потому, что естественный отбор, как чистильщик работая над бесчисленным множеством мелких деталей, прошелся после большой исходной ошибки установки сетчатки задом наперед и спас высококачественный точный инструмент.

Это напоминает мне сагу о телескопе Хаббла.

Вы помните, он был запущен в 1990 году и, обнаружилось, что он имеет крупный дефект.

Из-за незамеченной ошибки в калибровке аппарата, когда его полировали на земле, основное зеркало хотя и немного, но [функционально-] значимо отклонялось от нужной формы.

Дефект обнаружился после того, как телескоп был запущен на орбиту.

Решение было смело и изобретательно. Астронавты, доставленные на телескоп, успешно смонтировали на нем нечто вроде очков.

После этого телескоп заработал очень хорошо, и три последующих сервисных миссии обеспечили дальнейшее улучшение.

Я хочу сказать, что даже крупный дефект конструкции, грубая ошибка может быть скорректирована последующей починкой, искусность и тонкость которой при соответствующих обстоятельствах совершенно компенсируют исходную ошибку.

В эволюции в основном крупные мутации, даже если они могут привести к улучшению в правильном направлении, почти всегда требуют много дальнейших поправок, операций по зачистке множеством мелких мутаций, возникающих позднее и получающих преимущество при отборе, поскольку сглаживают острые кромки, оставленные исходной крупной мутацией.

Вот почему люди и ястребы видят так хорошо, несмотря на грубую ошибку в их исходной конструкции.

Снова Гельмгольц:

«Глаз имеет все возможные дефекты, которые могут быть найдены в оптическом инструменте, и даже несколько специфичных только для него; но они так скомпенсированы, что неточность получаемого изображения при обычных условиях освещения очень незначительно превышает ограничения чувствительности, устанавливаемые размерами колбочек сетчатки. Но коль скоро мы делаем опыты в каких-либо других условиях, нам становятся заметны хроматическая абберация, астигматизм, слепое пятно, сосудистые тени, несовершенная прозрачность среды и все другие дефекты, о которых я говорил.»

 

Неразумный дизайн

 

Такая картина крупных ошибок конструкции, скомпенсированных дальнейшими починками — это то, чего мы не должны ожидать там, где была действительно работа дизайнера.

Мы можем ожидать случайные ошибки, как со сферической абберацией в случае зеркала Хаббла, но не очевидную глупость, как в случае сетчатки, развернутой задом наперед.

Грубые ошибки такого рода идут не от плохого дизайна, а от истории.

Любимый пример, с тех пор, как мне на него указал профессор Дж. Д. Кури, когда учил меня в моем студенчестве, это возвратный гортанный нерв [ответвление одного из черепных нервов, нервов, которые идут напрямую от мозга, а не из спинного мозга].

Один из черепных нервов, блуждающий (vagus, и наименование уместно), имеет разные ответвления, два из которых идут к сердцу, и два на каждой стороне — к гортани (голосовая коробка у млекопитающих).

На каждой стороне шеи одна из ветвей гортанного нерва проходит напрямую в гортань, следуя прямым путем, таким, какой выбрал бы дизайнер.

Другой идет к гортани через странный обходной крюк.

Он спускается прямо до груди, делает петлю вокруг одной из основных артерий, выходящих из сердца (разные артерии на левой и правой стороне, но принцип один), и направляется назад вверх по шее к своей конечной цели.

Если вы думаете, что это продукт дизайна, возвратный гортанный нерв — это позор.

Гельмгольц имел бы еще больше причин вернуть его назад, чем в случае с глазом.

Но, как и в случае с глазом, все это вполне понятно, как только вы забудете дизайн и вместо этого подумаете об истории.

Чтобы понять ее, вы должны пойти назад ко времени, когда наши предки были рыбами.

У рыб сердце двухкамерное, в отличие от нашего четырехкамерного.

Оно качает кровь через большую центральную артерию, именуемую вентральной [брюшной] аортой.

От вентральной аорты обычно отходит шесть пар ответвлений, ведущих к шести жабрам на каждой стороне.

Кровь проходит через жабры, где насыщается кислородом.

Над жабрами она собирается другими шестью парами кровеносных сосудов в еще один большой сосуд, идущий вниз в середину, называемый дорсальной [спинной] аортой, которая питает остальную часть тела.

Шесть пар жаберных артерий — свидетельство сегментированного плана тела позвоночных, которое яснее и более очевидно у рыб, чем у нас.

Восхитительно, но оно очень наглядно у человеческих эмбрионов, чьи фарингеальные дуги очевидно получились из предковых жабр, что можно сказать, глядя на их детальную анатомию.

Конечно, они не функционируют в качестве жабр, но 5-месячные человеческие эмбрионы могут быть сочтены за маленьких розовых рыбок с жабрами.

Трудно не удивиться, почему киты, дельфины, дюгони и ламантины не <


Поделиться с друзьями:

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.013 с.