Проверка и замена тормозной жидкости. — КиберПедия 

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Проверка и замена тормозной жидкости.

2018-01-14 223
Проверка и замена тормозной жидкости. 0.00 из 5.00 0 оценок
Заказать работу

На современных автомобилях, в силу целого ряда преимуществ, применяются в основном гликолевые тормозные жидкости. К сожалению, за год они могут «впитать» до 2-3% влаги и их нужно периодически заменять, не дожидаясь когда состояние приблизится к опасному пределу (Периодичность замены указывается в инструкции по эксплуатации автомобиля и обычно составляет от 1 до 3 лет. Объективно оценить свойства тормозной жидкости можно только в результате лабораторных исследований. На практике состояние тормозной жидкости оценивают визуально – по внешнему виду. Она должна быть прозрачной, однородной, без осадка. Существуют приборы для определения состояния тормозной жидкости по температуре кипения или степени увлажнения. Но поскольку жидкость в системе не циркулирует, в бачке (место проверки) ее состояние может быть иным, чем в колесных цилиндрах. В бачке она контактирует с атмосферой, набирая влагу, а в тормозных механизмах нет. Но там жидкость часто сильно нагревается, в результате ее изначальные свойства ухудшаются.
Добавление свежей тормозной жидкости при прокачке системы, осуществляемой после ремонтных работ, практически не улучшает ситуацию, поскольку значительная часть ее объема при этом не меняется.
Жидкость в гидросистеме нужно заменять полностью. Последовательность и особенности этой операции, например прокачка с работающим двигателем, зависят от конструкции системы тормозов (типа усилителя, наличия антиблокировочных устройств и т.п.). Часто такая информация есть в руководстве по эксплуатации автомобиля.

ПЛАСТИЧНЫЕ СМАЗКИ

СОСТАВ.

Пластичные смазки - распространённый вид смазочных материалов, представляющих собой высококонцентрированные дисперсии твёрдых загустителей в жидкой среде. Чаще всего смазки - трёхкомпозитные коллоидные системы, содержащие дисперсионную среду - жидкую основу (70...90 %) дисперсную фазу – загуститель (10...15 %), модификаторы структуры и добавки - присадки, наполнители (1...15 %).

В качестве дисперсной среды используют масла нефтяного и синтетического происхождения, реже их смеси. К синтетическим маслам относят кремнийорганические жидкости - полисилкосаны, эфиры, полигликоли, фтор- и хлорорганические жидкости. Их применяют в основном для высокоскоростных подшипников, работающих в широких диапазонах температур и контактных нагрузок. Смеси синтетических и нефтяных масел применяют для более эффективного использования смазок и регулирования их эксплуатационных свойств.

Загустителями служат соли высокомолекулярных, жирных кислот - мыла, твёрдые углеводороды - церезины, петролатумы и некоторые продукты неорганического (бентонит, силикагель) или органического (кристаллические полимеры, производные карбамида) происхождения. Наиболее распространены мыла и твёрдые углеводороды. Концентрация мыльного и неорганического загустителя обычно не превышает 15 %, а концентрация твёрдых углеводородов доходит до 25 %.

Для регулирования структуры и улучшения функциональных свойств в смазки вводят добавки.

По сравнению с маслами смазки обладают следующими достоинствами:

- малый удельный расход;

- более простая конструкция машин и механизмов, следовательно, меньшая масса, более высокая надежность и ресурс;

- более продолжительный период замены;

- меньшие эксплуатационные затраты при ТО.

ОБЛАСТЬ ПРИМЕНЕНИЯ.

Пластичные смазки выполняют следующие основные функции:

- уменьшают силы трения между трущимися поверхностями;

- снижают износ и предотвращают задир (заедание) трущихся поверхностей;

- защищают металлы от коррозионного воздействия окружающей среды;

- уплотняют зазоры между сопряжёнными деталями.

Кроме основных функций смазки выполняют роль электроизоляционных материалов, защищают детали узлов трения от ударных нагрузок, снижают вибрации и шум. Практически нет смазок, хорошо выполняющих все перечисленные функции одновременно. В этом собственно и нет необходимости, поскольку различия в условиях применения выдвигают на первый план одну или две наиболее важные функции, обеспечивая надёжную работу агрегата.

Независимо от условий применения и назначения смазок они должны удовлетворять следующим основным требованиям:

- надёжно выполнять свои функции в широком диапазоне температур, удельных нагрузок и скоростей перемещения трущихся поверхностей;

- в минимальной степени изменять свои свойства в условиях эксплуатации;

- оказывать наименьшее воздействие на контактирующие с ними материалы;

- удовлетворять правилам техники безопасности и не оказывать вредного воздействия на окружающую среду;

- иметь невысокую стоимость и быть экономичными в эксплуатации.

Работа смазочного материала зависит не только от условий эксплуатации самой смазки (температура, нагрузки, скорость перемещения, окружающая среда), но и от характера работы механизма (остановки, постоянные или переменные внешние воздействия и т.д.).

Эффективная работа смазочного материала определяется:

- конструктивными особенностями узла (тип, размер, характер движения);

- системой смазки и видом материала, с которым смазка контактирует во время работы;

- условиями эксплуатации узла трения;

- сроками смены смазочного материала.

Отсюда к смазочным материалам предъявляют и частные требования, например, диэлектрические и оптические свойства, водостойкость и т.д.

По назначению смазки разделяют на:

- антифрикционные – для снижения трения и износа; и в свою очередь, антифрикционные общего назначения и антифрикционные технологические (для облегчения технологических процессов обработки материалов);

- консервационные – для предохранения металлических изделий от коррозии;

- уплотнительные – для герметизации трущихся поверхностей, сальников, зазоров и др.;

- специального назначения, например, фрикционные – для увеличения трения с целью предотвращения проскальзывания, приработочные – для улучшения приработки трущихся поверхностей и др.

 

Подавляющее большинство относится к первым двум группам. Следует отметить условность такого разделения смазок, т.к. антифрикционные должны одновременно защищать от коррозии, консервационные должны обладать хорошими антифрикционными свойствами, а уплотнительные должны иметь хорошие смазочные и защитные свойства.

Кроме вышеперечисленных классификаций по назначению или функциональному действию, известна классификация смазок по составу. По типу загустителя смазки подразделяют на органические и неорганические. К органическим загустителям относятся мыла, твёрдые углеводороды, пигменты и некоторые кристаллические полимеры. Неорганические загустители - силикагель, бентонит, технический углерод (сажа) и некоторые другие.

Мыльные смазки в свою очередь делят на кальциевые, натриевые, литиевые, бариевые, алюминиевые и др. В зависимости от состава жиров, употребляемых для приготовления мыльных загустителей, выделяют смазки на синтетических, жирных кислотах, природных жирах и технических, жирных кислотах.

Как уже отмечалось, пластичные смазки при малых нагрузках ведут себя как твёрдые тела, не растекаются под действием собственной массы, не сбрасываются инерционными силами с поверхностей, удерживаются на вертикальных поверхностях. Под действием нагрузок, превышающих предел их прочности, смазки начинают течь подобно вязким жидкостям.

Таким образом можно сформулировать принципиальные отличия смазок от жидких смазочных материалов:

- хорошее удерживание на наклонных и вертикальных поверхностях, отсутствие выдавливания из узлов трения под действием значительных нагрузок;

- высокая смазочная способность, т.е. лучшие показатели противоизносных и противозадирных свойств, особенно при больших нагрузках;

- лучшая защита металлических поверхностей от коррозионного воздействия окружающей среды;

- высокая герметизация узлов трения, предохранение их от проникновения нежелательных продуктов;

- более широкий температурный диапазон работоспособности и лучшие вязкостно-температурные характеристики;

- более надёжная и эффективная работа в жёстких условиях эксплуатации (одновременное воздействие высоких температур, давлений, ударных нагрузок, переменный режим скоростей и т.д.);

- экономичность в применении за счёт более продолжительной работоспособности и меньшего расхода.

К недостаткам следует отнести следующее:

- отсутствие отвода тепла смазываемых деталей;

- несовершенную систему подачи пластичного материала;

- низкую химическую стабильность мыльных смазок.

ОСНОВНЫЕ СВОЙСТВА СМАЗОК.

Прочностные свойства. Частицы загустителя образуют в масле структурный каркас, благодаря которому смазки в состоянии покоя обладают пределом прочности на сдвиг. Предел прочности - это минимальная нагрузка, при которой начинается разрушение каркаса и происходит необратимая деформация смазки - сдвиг. При приложении нагрузки, превышающей предел прочности, смазки деформируются, а при нагрузке ниже предела прочности они проявляют упругость подобно твёрдым телам. Благодаря пределу прочности смазки удерживаются на наклонных и вертикальных поверхностях, не вытекают из негерметизированных узлов трения. Кроме того, предел прочности определяет стартовые характеристики узлов трения, например, усилие, которое необходимо приложить к подшипнику в начале его вращения.

Все факторы, влияющие на формирование структуры смазок, влияют и на их прочность. К ним относятся:

- тип и концентрация загустителя;

- химический состав и свойства дисперсионной среды;

- состав и концентрация модификатора;

- режим приготовления смазок (температура и продолжительность нагревания, скорость охлаждения и т.д.).

При повторныхнагружениях с уменьшением промежутка времени между этими нагружениями значение последовательно замеряемого предела прочности уменьшается.

С повышением температуры предел прочности смазок уменьшается. Температура, при которой предел прочности приближается к нулю, является истинной температурой перехода смазки из пластичного в жидкое состояние.

Для большинства смазок предел прочности при 20 0С лежит в пределах 100...1000 Па.

Измеряют предел прочности на пластометре К-2 или прочномере СК и др. приборах.

ВЯЗКОСТНЫЕ СВОЙСТВА

Вязкость определяет прокачиваемость смазок при низких температурах, стартовые характеристики и сопротивление вращению при установившихся режимах, а так же возможность заправки узлов трения. В отличии от масел вязкость смазок зависит не только от температуры, но и от градиента скорости сдвига. Поэтому при определении вязкости смазки необходимо знать не только температуру, при которой она определялась, но и скорость, с которой она продавливалась через капилляр. Поэтому вязкость смазки при определенной скорости перемещения и температуре называют эффективной вязкостью.

При увеличении скорости деформации вязкость резко снижается. С повышением температуры вязкость смазки так же резко снижается. Изменение вязкости от скорости деформации выражается вязкостно-температурной характеристикой, а от температуры - вязкостно-температурной характеристикой. При этом первая определяется при постоянной температуре, а вторая при постоянной скорости сдвига. По вязкостно-температурным свойствам смазки превосходят масла, поскольку значительная доля сопротивления течения смазок приходится на разрушение структурного каркаса, прочность которого мало зависит от температуры.

Увеличение концентрации и степени дисперсности загустителя приводит к повышению вязкости смазки. На вязкость смазки влияет также вязкость дисперсионной среды и технология приготовления.

Определяют вязкость с помощью капиллярных вискозиметров - АКВ-2 или АКВ-4, ротационного вискозиметра – ПВР-1 и др. приборов.

 

§ Механическая стабильность (тиксотропные превращения смазок). Изменение реологических свойств смазок при механическом разрушении и в процессе последующего отдыха - одна из важных характеристик. Тиксотропия - это способность дисперсных систем обратимо разжижаться при механическом воздействии и отвердевать при относительно длинном их пребывании в покое. Положительным качеством, обусловливаемым тиксотропией, является то, что при выбрасывании частиц разжиженной смазки из зоны трения и отложения их на неподвижных поверхностях они увеличивают вязкость и автоматически герметизируют узел трения от вытекания смазки. Однако сильно разупрочняющиеся при механическом воздействии смазки не способны удерживаться в узлах трения и вытекают из них при сравнительно небольших нагрузках. Чрезмерное упрочнение смазки после разрушения также является нежелательным, так как затрудняется запуск узла трения и поступления смазки к контактным поверхностям.

Механическая стабильность смазок зависит от типа загустителя, размеров, формы и прочности связи между дисперсными частицами. Уменьшение размеров частиц загустителя (до определенных пределов) способствует улучшению механической стабильности смазок. Смазки, имеющие мыльные волокна с большим отношением длины к диаметру, более стабильны. Увеличение концентрации загустителя также повышает механическую стабильность смазок. На тиксотропные превращения смазок влияют состав и свойства дисперсной среды, присутствие наполнителей и добавок.

Механическую стабильность определяют в ротационном приборе - тиксометре. Оценивают механическую стабильность специальными коэффициентами, которые рассчитывают по изменению прочности смазки на разрыв: Кр - индекс разрушения, Кв - индекс тиксотропного восстановления.

§ Пенетрация. Этот показатель до сих пор используется для оценки прочности и сравнения смазок друг с другом. Однако смазки, обладающие разными реологическими свойствами, могут иметь одинаковые числа пенетрации, и это приводит к неверным представлениям об эксплуатационных свойствах смазок. В таблице 4.1 классификация пластичных смазок по консистенции, предлагаемая Национальной ассоциацией пластичных смазок США NLGI.

Таблица 4.1 – Классификация пластичных смазок по числу пенетрации

Класс Диапазон пенетрации Визуальная оценка консистенции
  445…475 400…430 355…385 310…340 265…295 220…250 175…205 130…160 85…115 Очень мягкая, как очень вязкое масло То же Мягкая То же Вазелинообразная Почти твёрдая Твёрдая То же Очень твёрдая мылообразная То же

 

§ Коллоидная стабильность. Способность удерживать масло, сопротивляться его выделению при хранении и эксплуатации характеризует коллоидную стабильность смазок. Выделение масла может быть самопроизвольным вследствие структурных изменений в смазке, например, под действием собственной массы, и может ускоряться или замедляться под действием температуры, давления и др. факторов. Слишком большое выделение масла в процессе работы - более 30 % - приводит к резкому упрочнению смазки и нарушает её нормальное поступление к контактируемым поверхностям.

Коллоидная стабильность зависит от размеров, формы и прочности связей структурных элементов. Большое влияние оказывает вязкость дисперсной среды: чем выше вязкость масла, тем труднее ему вытекать из объёма смазки.

Коллоидная стабильность оценивается по объёму масла, отпрессованного из смазки при комнатной температуре в течении 30 минут и выражается в % - для смазок она не должна превышать 30 %. Проводят это на разных приборах, но самым простым и удобным является механическое отпрессовывание масла из некоторого объёма, помещенного между слоями фильтровальной бумаги.

§ Химическая стабильность. Под химической стабильностью понимают стойкость смазок против окисления кислородом воздуха, хотя в широком смысле - это отсутствие изменения свойств смазок под воздействием на них химических реагентов (кислот, щелочей, кислорода и т.д.). Окисление приводит к образованию и накоплению в смазках кислородосодержащих, активных веществ, к изменению реологических свойств (как правило, разупрочнению), ухудшению коллоидной стабильности, понижению температуры каплепадения, смазочной способности и т.д.

Стабильность против окисления особенно важный показатель для смазок, которые:

- заправляют в узлы трения 1...2 раза в течение 10...15 лет;

- работают при высоких температурах;

- работают в тонких слоях;

- в контакте с цветными металлами.


Поделиться с друзьями:

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.027 с.