Линейная независимость лестничной системы векторов. — КиберПедия 

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Линейная независимость лестничной системы векторов.

2018-01-05 663
Линейная независимость лестничной системы векторов. 0.00 из 5.00 0 оценок
Заказать работу

Неравенство Коши-Буняковского.

Для любых двух векторов в евклидовом пространстве справедливо неравенство

Доказательство:

, x-произвольное число

по свойству положительной определенности скалярного произведения

 


Неравенство треугольника.

Каковы бы ни были три точки, расстояние между любыми двумя из этих точек не больше суммы расстояний от них до третьей.

Доказательство. Пусть A, B и С – данные три точки. Если две токи из трех или все три точки совпадают, то утверждение теоремы очевидно. Если все точки различны и лежат на одной прямой, то AB + BC = AC. Отсюда видно, что каждое из трех расстояний не больше суммы двух других. Если три точки не лежат на одной прямой докажем, что AC< доказана. Теорема ВС. + AB AC то BC, DC и AD как Так DC. ≤ доказанному По AC. прямую на BD перпендикуляр Опустим>

 

 


Линейная независимость лестничной системы векторов.

Система векторов в Rn:

= (a1, a2, a3 … an)

= (0, b2, b3 … bn)

= (0, 0, c3 … cn)

Теорема: любая лестничная система векторов линейно независима.

Доказательство: Предположим противное. Тогда один из данных векторов должен линейно выражаться через остальные. Пусть, например, линейно выражается через ,

=k +l

Но такое равенство невозможно, поскольку первая координата вектора отлична от нуля, а первая координата вектора k +l … равно нулю. Полученное противоречие доказывает, что система , , , … линейно независима.

 

Однозначность разложения вектора по базису.

Теорема о базисе. Любая ЛНЗ система векторов из Rn явл. базисом Rn, когда число векторов этой системы равно n.

Док-во. Пусть: { в1, в2, …, вm } ЛНЗ система в Rn, докажем, что m=n 1) m>n. Получим, что система ЛЗ(по теореме об ортогональном векторе), что противоречит условию; 2) m<n Пусть{ в1, в2, …, вm }- базис Rn, то для любого Х ЄRn х=х1в12в2+…+хmвm; m<n,то по теореме о существовании ортогонального вектора есть ненулевой вектор, кот. Ортогонален любому вектору этой системы (увi, i=1,…,n), то увi=0; у ЄRn, тогда у=у1в12в2+…+уmвm, умножим это рав-во на само себя уу=(у1в12в2+…+уmвm)у=у11у1)+у22в2)+…+уmmвm)=0; уу=0, то у=0, а по усл теоремы у≠0, противоречие, значит m<n неверно, тогда m=n.
5. Формула умножения комплексных чисел в тригонометрической форме.

Z1=| Z1|(cosφ1 + i sinφ1); Z2=| Z2|(cosφ2 + i sinφ2)

Z1 · Z2 =| Z1|| Z2|((cosφ1 cosφ2 - sinφ1 sinφ2 ) + i(sinφ1 cosφ2 + cosφ1 sinφ2)) =

| Z1|| Z2|(cos(φ1+ φ2) + i sin(φ1 + φ2));

Для умножения Z1 на Z2 модули этих чисел следует перемножить, а аргументы сложить.

 

 

Формула деления комплексных чисел в тригонометрической форме.

Z1=| Z1|(cosφ1 + i sinφ1); Z2=| Z2|(cosφ2 + i sinφ2)

φ12) + isin (φ12)) Z2≠0

Для нахождения частного следует модуль числа Z1 разделить на модуль числа Z2, а из аргумента числа Z1 вычесть аргумент числа Z2.

 


Неравенство Коши-Буняковского.

Для любых двух векторов в евклидовом пространстве справедливо неравенство

Доказательство:

, x-произвольное число

по свойству положительной определенности скалярного произведения

 


Неравенство треугольника.

Каковы бы ни были три точки, расстояние между любыми двумя из этих точек не больше суммы расстояний от них до третьей.

Доказательство. Пусть A, B и С – данные три точки. Если две токи из трех или все три точки совпадают, то утверждение теоремы очевидно. Если все точки различны и лежат на одной прямой, то AB + BC = AC. Отсюда видно, что каждое из трех расстояний не больше суммы двух других. Если три точки не лежат на одной прямой докажем, что AC< доказана. Теорема ВС. + AB AC то BC, DC и AD как Так DC. ≤ доказанному По AC. прямую на BD перпендикуляр Опустим>

 

 


Линейная независимость лестничной системы векторов.

Система векторов в Rn:

= (a1, a2, a3 … an)

= (0, b2, b3 … bn)

= (0, 0, c3 … cn)

Теорема: любая лестничная система векторов линейно независима.

Доказательство: Предположим противное. Тогда один из данных векторов должен линейно выражаться через остальные. Пусть, например, линейно выражается через ,

=k +l

Но такое равенство невозможно, поскольку первая координата вектора отлична от нуля, а первая координата вектора k +l … равно нулю. Полученное противоречие доказывает, что система , , , … линейно независима.

 


Поделиться с друзьями:

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.