
Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...
История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...
Топ:
Установка замедленного коксования: Чем выше температура и ниже давление, тем место разрыва углеродной цепи всё больше смещается к её концу и значительно возрастает...
Устройство и оснащение процедурного кабинета: Решающая роль в обеспечении правильного лечения пациентов отводится процедурной медсестре...
Оценка эффективности инструментов коммуникационной политики: Внешние коммуникации - обмен информацией между организацией и её внешней средой...
Интересное:
Мероприятия для защиты от морозного пучения грунтов: Инженерная защита от морозного (криогенного) пучения грунтов необходима для легких малоэтажных зданий и других сооружений...
Как мы говорим и как мы слушаем: общение можно сравнить с огромным зонтиком, под которым скрыто все...
Подходы к решению темы фильма: Существует три основных типа исторического фильма, имеющих между собой много общего...
Дисциплины:
![]() |
![]() |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
В таблице 6 представлены основные теплофизические свойства некоторых конструкционных материалов.
Теплопроводность материала определяется как поток теплоты через единицу площади при градиенте температуры в один градус, вызывающий этот перенос теплоты.
Существуют три основных механизма передачи теплоты в веществе:
1) движение электронов - реализуется в металлах;
2) передача энергии колебаний решетки или энергии фононов - реализуется в диэлектриках;
3) движение молекул - как это осуществляется в газах.
В жидкостях главным механизмом передачи теплоты теплопроводностью является передача энергии колебаний молекул, тогда как в газах теплота передается в основном путем переноса энергии поступательного движения (для одноатомных газов) и переноса энергии поступательного и вращательного движения (для двухатомных газов).
Наибольшая теплопроводность у меди, а минимальная у пенополиуретана (ППУ) – 500 и 0.026 Вт/(мК), соответственно.
Таблица 6
Теплофизические свойства материалов
Материал | Плотность, кг/м3 | Теплоемкость, Дж/(кг·К) | Теплопроводность, Вт/(м·К) | Объемная теплоемкость, (ρ·с)10-6, Дж/(м3·К) | Коэффициент термического расширения, a106, 1/К |
12Х18Н10Т | 11.5 | 3.6 | 13.2 | ||
АМг-6 | |||||
ВТ-1 | 8.14 | 0.1 | |||
М-2 | 3.47 | 13.6 | |||
Кварцевое стекло | 1.9 | 0.26 | |||
Фторопласт, Ф-4 | 0.24 | 2.4 | |||
Стекловолокнит, АГ-4 | 0.48 | 2.12 | |||
Стеклотекстолит | 0.3 | 2.47 | 0.9 | ||
ППУ, «Изолан» | 35÷60 | ~0 | 0.015÷0.026 | - |
Теплофизические свойства материалов существенно зависят от температуры.
Теплопроводность конструкционных материалов, в основном, увеличивается с повышением температур. Теплопроводность меди и титановых сплавов сначала увеличивается, а затем уменьшается. На рисунках 27, 28 представлены данные по теплопроводности некоторых материалов.
Рисунок 27 – Зависимость теплопроводности титанового сплава (ВТ-6), алюминиевого сплава (АМГ-6) и нержавеющей стали (12Х18Н10Т) от температуры
Рисунок 28 – Зависимость теплопроводности меди (М3) от температуры
Плотность металлов незначительно зависит от температуры, за исключением композиционных материалов (стекловолокнит - «АГ-4», стеклотекстолит, полиимид и др). Наибольшая плотность у меди, а минимальная у пенополиуретана (ППУ) – 8900 и 60 кг/(м3), соответственно.
Теплоемкость вещества определяется как энергия, необходимая для изменения температуры единицы массы вещества на один градус при неизменном давлении (ср) или неизменном объеме (сv).
|
Для теплофизических расчётов элементов конструкций большое значение имеет объёмная теплоёмкость материала. Она определяет затраты теплоты при изменении температуры материала на один градус единицы объёма - . Именно объёмная теплоёмкость материала определяет скорость изменения температуры материала при его нагреве или охлаждении.
Объёмная теплоёмкость материалов уменьшается с понижением температуры. На рисунке 31 представлены характерные величины объёмной теплоёмкости материалов от температуры. Видно, что объемная теплоёмкость у нержавеющей стали наибольшая до температуры 80 К из рассмотренных материалов, а объемная теплоёмкость у титанового сплава наименьшая.
Рисунок 29 – Зависимость объёмной теплоёмкости материалов от температуры
Коэффициент термического расширения (a) определяется как относительное изменение длины материала при изменении температуры на один градус. В таблице 6 представлены средние коэффициенты линейного расширения материалов в диапазоне изменения температуры от 300 до 80 К. Максимальный коэффициент термического линейного расширения (КТР) материала у фторопласта – 4. Минимальный коэффициент линейного расширения материала у кварцевого стекла. При разработке конструкций необходимо обеспечить термопрочность за счёт согласования КТР.
Изменение с температурой коэффициента теплового расширения может быть объяснено на основе рассмотрения межмолекулярных сил взаимодействия в материале. Когда энергия молекулы увеличивается (или когда увеличивается температура материала), пространство, занимаемое атомом относительно соседних атомов, становится больше, что означает расширение материала. Скорость, с которой увеличивается среднее пространство, занимаемое атомом, повышается с повышением энергии или температуры материала. Поэтому, коэффициент теплового расширения увеличивается с повышением температуры.
|
|
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...
Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...
Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьшения длины пробега и улучшения маневрирования ВС при...
История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!