Причины аварии и расследование — КиберПедия 

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Причины аварии и расследование

2018-01-04 70
Причины аварии и расследование 0.00 из 5.00 0 оценок
Заказать работу

Характеристики АЭС

Основная статья: Чернобыльская АЭС

Чернобыльская АЭС (51°23′22″ с. ш. 30°05′59″ в. д.HGЯO) расположена на территории Украины в 3 км от города Припять, в 18 км от города Чернобыль, в 16 км от границы с Белоруссией и в 110 км от Киева.

Ко времени аварии на ЧАЭС действовали четыре энергоблока на базе реакторов РБМК-1000 (реактор большой мощности канального типа) с электрической мощностью 1000 МВт (тепловая мощность — 3200 МВт) каждый. Ещё два аналогичных энергоблока строились. Пятый энергоблок был завершён на 80 %. К шестому энергоблоку успели выкопать котлован. ЧАЭС производила примерно десятую долю электроэнергии УССР.

ЧАЭС остановлена навсегда 15 декабря 2000 года .

Мощность ЧАЭС составляла 12800 МВт (тепловая) и 4000 МВт (электрическая).

Авария

Фотография территории вокруг Чернобыльской АЭС со станции «Мир», 27 апреля 1997 года

В 01:23:47[6] в субботу 26 апреля 1986 года на 4-м энергоблоке Чернобыльской АЭС произошёл взрыв, который полностью разрушил реактор. Здание энергоблока частично обрушилось, при этом погибли два человека — оператор ГЦН (главных циркуляционных насосов) Валерий Ходемчук (тело не найдено, завалено обломками двух 130-тонных барабан-сепараторов) и сотрудник пусконаладочного предприятия Владимир Шашенок (умер от перелома позвоночника и многочисленных ожогов в 6:00 в Припятской медсанчасти (МСЧ) № 126 26 апреля). В различных помещениях и на крыше начался пожар. Впоследствии остатки активной зоны расплавились, смесь из расплавленного металла, песка, бетона и фрагментов топлива растеклась по подреакторным помещениям[7][8]. В результате аварии произошёл выброс в окружающую среду радиоактивных веществ, в том числе изотопов урана, плутония, йода-131 (период полураспада — 8 дней), цезия-134 (период полураспада — 2 года), цезия-137 (период полураспада — 30 лет), стронция-90 (период полураспада — 28,8 лет).

Хронология

На 25 апреля 1986 года была запланирована остановка 4-го энергоблока Чернобыльской АЭС для очередного планово-предупредительного ремонта. Во время таких остановок обычно проводятся различные испытания оборудования, как регламентные, так и нестандартные, проводящиеся по отдельным программам. В этот раз целью одного из них было испытание так называемого режима «выбега ротора турбогенератора», предложенного генеральным проектировщиком (институтом Гидропроект) в качестве дополнительной системы аварийного электроснабжения. Режим «выбега» позволял бы использовать кинетическую энергию ротора турбогенератора для обеспечения электропитанием питательных (ПЭН) и главных циркуляционных насосов (ГЦН) в случае обесточивания электроснабжения собственных нужд станции. Однако данный режим не был отработан или внедрён на АЭС с РБМК. Это были уже четвёртые испытания режима, проводившиеся на ЧАЭС. Первая попытка в 1982 году показала, что напряжение при выбеге падает быстрее, чем планировалось. Последующие испытания, проводившиеся после доработки оборудования турбогенератора в 1983, 1984 и 1985 годах также по разным причинам заканчивались неудачно[9].

Испытания должны были проводиться 25 апреля 1986 года на мощности 700—1000 МВт (тепловых), 22—31 % от полной мощности[10]. Примерно за сутки до аварии (к 3:47 25 апреля) мощность реактора была снижена примерно до 50 % (1600 МВт)[11]. В соответствии с программой, отключена система аварийного охлаждения реактора. Однако дальнейшее снижение мощности было запрещено диспетчером Киевэнерго. Запрет был отменён диспетчером в 23:10. Во время длительной работы реактора на мощности 1600 МВт происходило нестационарное ксеноновое отравление. В течение 25 апреля пик отравления был пройден, началось разотравление реактора. К моменту получения разрешения на дальнейшее снижение мощности оперативный запас реактивности (ОЗР) возрос практически до исходного значения и продолжал возрастать. При дальнейшем снижении мощности разотравление прекратилось, и снова начался процесс отравления.

В течение примерно двух часов мощность реактора была снижена до уровня, предусмотренного программой (около 700 МВт тепловых), а затем, по неустановленной причине, до 500 МВт. В 0:28 при переходе с системы локального автоматического регулирования (ЛАР) на автоматический регулятор общей мощности (АР) оператор (СИУР) не смог удержать мощность реактора на заданном уровне, и мощность провалилась (тепловая до 30 МВт и нейтронная до нуля)[9][11]. Персонал, находившийся на БЩУ-4, принял решение о восстановлении мощности реактора и (извлекая поглощающие стержни реактора)[9][12] через несколько минут добился её роста и в дальнейшем — стабилизации на уровне 160—200 МВт (тепловых). При этом ОЗР непрерывно снижался из-за продолжающегося отравления. Соответственно, стержни ручного регулирования (РР) продолжали извлекаться[11].

После достижения 200 МВт тепловой мощности были включены дополнительные главные циркуляционные насосы, и количество работающих насосов было доведено до восьми. Согласно программе испытаний, четыре из них, совместно с двумя дополнительно работающими насосами ПЭН, должны были служить нагрузкой для генератора «выбегающей» турбины во время эксперимента. Дополнительное увеличение расхода теплоносителя через реактор привело к уменьшению парообразования. Кроме этого, расход относительно холодной питательной воды оставался небольшим, соответствующим мощности 200 МВт, что вызвало повышение температуры теплоносителя на входе в активную зону, и она приблизилась к температуре кипения[11].

В 1:23:04 начался эксперимент. Из-за снижения оборотов насосов, подключённых к «выбегающему» генератору, и положительного парового коэффициента реактивности (см. ниже) реактор испытывал тенденцию к увеличению мощности (вводилась положительная реактивность), однако в течение почти всего времени эксперимента поведение мощности не внушало опасений.

В 1:23:38 зарегистрирован сигнал аварийной защиты АЗ-5[13] от нажатия кнопки на пульте оператора. Поглощающие стержни начали движение в активную зону, однако вследствие их неудачной конструкции и заниженного (не регламентного) оперативного запаса реактивности реактор не был заглушен. Через 1—2 с был записан фрагмент сообщения, похожий на повторный сигнал АЗ-5. В следующие несколько секунд зарегистрированы различные сигналы, свидетельствующие о быстром росте мощности, затем регистрирующие системы вышли из строя.

По различным свидетельствам произошло от одного до нескольких мощных ударов (большинство свидетелей указали на два мощных взрыва), и к 1:23:47—1:23:50 реактор был полностью разрушен[9][11][12][14][15].

Недостатки реактора

Реактор РБМК-1000 обладал рядом конструктивных недостатков и по состоянию на апрель 1986 года имел десятки нарушений и отступлений от действующих правил ядерной безопасности[18]. Два из этих недостатков имели непосредственное отношение к причинам аварии. Это положительная обратная связь между мощностью и реактивностью , возникавшая при некоторых режимах эксплуатации реактора, и наличие так называемого концевого эффекта , проявлявшегося при определённых условиях эксплуатации. Эти недостатки не были должным образом отражены в проектной и эксплуатационной документации, что во многом способствовало ошибочным действиям эксплуатационного персонала и созданию условий для аварии. После аварии в срочном порядке (первичные — уже в мае 1986 года) были осуществлены мероприятия по устранению этих недостатков[18].

Ошибки операторов

Первоначально утверждалось[16], что в процессе подготовки и проведения эксперимента эксплуатационным персоналом был допущен ряд нарушений и ошибок и что именно эти действия и стали главной причиной аварии. Однако затем такая точка зрения была пересмотрена и выяснилось[11], что большинство из указанных действий нарушениями не являлись, либо не повлияли на развитие аварии ([11], с. 22—23). Так, длительная работа реактора на мощности ниже 700 МВт не была запрещена действовавшим на тот момент регламентом, как это утверждалось ранее, хотя и являлась ошибкой эксплуатации и фактором, способствовавшим аварии. Кроме того, это было отклонением от утверждённой программы испытаний. Точно так же включение в работу всех восьми главных циркуляционных насосов (ГЦН) не было запрещено эксплуатационной документацией. Нарушением регламента было лишь превышение расхода через ГЦН выше предельного значения, но кавитации (которая рассматривалась как одна из причин аварии) это не вызвало. Отключение системы аварийного охлаждения реактора (САОР) допускалось, при условии проведения необходимых согласований. Система была заблокирована в соответствии с утверждённой программой испытаний, и необходимое разрешение от главного инженера станции было получено. Это не повлияло на развитие аварии: к тому моменту, когда САОР могла бы сработать, активная зона уже была разрушена. Блокировка защиты реактора по сигналу остановки двух турбогенераторов не только допускалась, но, наоборот, предписывалась при разгрузке энергоблока перед его остановкой ([18], с. 90).

Таким образом, перечисленные действия не были нарушением регламента эксплуатации; более того, высказываются обоснованные сомнения в том, что они как-то повлияли на возникновение аварии в тех условиях, которые сложились до их выполнения ([18], с. 78). Также признано, что «операции со значениями уставок и отключением технологических защит и блокировок не явились причиной аварии, не влияли на её масштаб. Эти действия не имели никакого отношения к аварийным защитам собственно реактора (по уровню мощности, по скорости её роста), которые персоналом не выводились из работы» ([18], с. 92). При этом нарушением регламента было только непереключение уставки защиты по уровню воды в барабане сепараторе (с −1100 на −600 мм), но не изменение уставки по давлению пара (с 55 на 50 кгс/см²).

Нарушением регламента, существенно повлиявшим на возникновение и протекание аварии, была, несомненно, работа реактора с малым оперативным запасом реактивности (ОЗР). В то же время не доказано, что авария не могла бы произойти без этого нарушения ([11], с. 17—19).

Вне зависимости от того, какие именно нарушения регламента допустил эксплуатационный персонал и как они повлияли на возникновение и развитие аварии, персонал поддерживал работу реактора в опасном режиме. Работа на малом уровне мощности с повышенным расходом теплоносителя и при малом ОЗР была ошибкой ([20], с. 121) независимо от того, как эти режимы были представлены в регламенте эксплуатации и независимо от наличия или отсутствия ошибок в конструкции реактора ([11], с. 29—31).

Версии причин аварии

Единой версии причин аварии, с которой было бы согласно всё экспертное сообщество специалистов в области реакторной физики и техники, не существует. Обстоятельства расследования аварии были таковы, что (и тогда, и теперь) судить о её причинах и следствиях приходится специалистам, чьи организации прямо или косвенно несут часть ответственности за неё. В этой ситуации радикальное расхождение во мнениях вполне естественно. Также вполне естественно, что в этих условиях помимо признанных «авторитетных» версий появилось множество маргинальных, основанных больше на домыслах, нежели на фактах.

Единым в авторитетных версиях является только общее представление о сценарии протекания аварии. Её основу составило неконтролируемое возрастание мощности реактора. Разрушающая фаза аварии началась с того, что от перегрева ядерного топлива разрушились тепловыделяющие элементы (твэлы) в определённой области в нижней части активной зоны реактора. Это привело к разрушению оболочек нескольких каналов, в которых находятся эти твэлы, и пар под давлением около 7 МПа получил выход в реакторное пространство, в котором нормально поддерживается атмосферное давление (0,1 МПа). Давление в реакторном пространстве (РП) резко возросло, что вызвало дальнейшие разрушения уже реактора в целом, в частности отрыв верхней защитной плиты (т. н. «схемы Е») со всеми закреплёнными в ней каналами. Герметичность корпуса (обечайки) реактора и вместе с ним контура циркуляции теплоносителя (КМПЦ) была нарушена, и произошло обезвоживание активной зоны реактора. При наличии положительного парового (пустотного) эффекта реактивности 4—5 β, это привело к разгону реактора на мгновенных нейтронах и наблюдаемым масштабным разрушениям.

Версии принципиально расходятся по вопросу о том, какие именно физические процессы запустили этот сценарий и что явилось исходным событием аварии:

  • произошёл ли первоначальный перегрев и разрушение твэлов из-за резкого возрастания мощности реактора вследствие появления в нём большой положительной реактивности или наоборот, появление положительной реактивности — это следствие разрушения твэлов, которое произошло по какой-либо другой причине ([9], с. 556, 562, 581—582)?
  • было ли нажатие кнопки аварийной защиты АЗ-5 непосредственно перед неконтролируемым возрастанием мощности исходным событием аварии или нажатие кнопки АЗ-5 не имеет никакого отношения к аварии ([9], с. 578)? И что тогда следует считать исходным событием: начало испытаний выбега ([18], с. 73) или незаглушение реактора при провале по мощности за 50 минут до взрыва ([9], с. 547)?

Помимо этих принципиальных различий версии могут расходиться в некоторых деталях сценария протекания аварии, её заключительной фазы (взрыв реактора).

Из основных, признаваемых экспертным сообществом, версий аварии ([11], с. 17—19) более или менее серьёзно рассмотрены только те, в которых аварийный процесс начинается с быстрого неконтролируемого роста мощности, с последующим разрушением твэлов. Наиболее вероятной считается версия ([11], с. 17), согласно которой «исходным событием аварии явилось нажатие кнопки АЗ-5 в условиях, которые сложились в реакторе РБМК-1000 при низкой его мощности и извлечении из реактора стержней РР сверх допустимого количества» ([18], с. 97). Из-за наличия концевого эффекта при паровом коэффициенте реактивности величиной +5β и в том состоянии, в котором находился реактор, аварийная защита, вместо того чтобы заглушить реактор, запускает аварийный процесс согласно вышеописанному сценарию. Расчёты, выполненные в разное время разными группами исследователей, показывают возможность такого развития событий[18][21]. Это также косвенно подтверждается тем, что в случае «разгона» реактора на мгновенных нейтронах из-за «запоздалого» нажатия СИУРом кнопки АЗ-5, сигнал на его аварийную остановку был бы сформирован автоматически: по превышению периода удвоения мощности, превышению максимального уровня мощности и т. п. Такие события обязательно должны были предшествовать взрыву реактора и реакция автоматики защиты была бы обязательной и непременно опередила бы реакцию оператора. Однако, общепризнано, что первый сигнал аварийной защиты был дан кнопкой на пульте оператора АЗ-5, которая используется для глушения реактора в любых аварийных и нормальных условиях. В частности, именно этой кнопкой был остановлен 3-й энергоблок ЧАЭС в 2000 г.

Записи системы контроля и показания свидетелей подтверждают эту версию. Однако не все с этим согласны, есть расчёты, выполненные в НИКИЭТ, которые такую возможность отрицают[9].

Главным конструктором высказываются другие версии начального неконтролируемого роста мощности, в которых причиной этого является не работа СУЗ реактора, а условия во внешнем контуре циркуляции КМПЦ, созданные действиями эксплуатационного персонала. Исходными событиями аварии в этом случае могли бы быть:

  • кавитация главного циркуляционного насоса (ГЦН), вызвавшая отключение ГЦН и интенсификацию процесса парообразования с введением положительной реактивности;
  • кавитация на запорно-регулирующих клапанах (ЗРК) каналов реактора, вызвавшая поступление дополнительного пара в активную зону с введением положительной реактивности;
  • отключение ГЦН собственными защитами, вызвавшее интенсификацию процесса парообразования с введением положительной реактивности.

Версии о кавитации основываются на расчётных исследованиях, выполненных в НИКИЭТ, но по собственному признанию авторов этих расчётов, «детальные исследования кавитационных явлений не выполнялись» ([9], с. 561). Версия отключения ГЦН, как исходного события аварии, не подтверждается зарегистрированными данными системы контроля ([18], с. 64—66). Кроме того в адрес всех трёх версий высказывается критика, состоящая в том, что речь идёт по существу не об исходном событии аварии, а о факторах, способствующих её возникновению. Нет количественного подтверждения версий расчётами, моделирующими произошедшую аварию ([18], с. 84).

Существуют также различные версии, касающиеся заключительной фазы аварии, собственно взрыва реактора. Высказывались предположения, что взрыв, разрушивший реактор, имел химическую природу, то есть это был взрыв водорода, который образовался в реакторе при высокой температуре в результате пароциркониевой реакции и ряда других процессов. Существует версия, что взрыв был исключительно паровым. По этой версии все разрушения вызвал поток пара, выбросив из шахты значительную часть графита и топлива. А пиротехнические эффекты в виде «фейерверка вылетающих раскалённых и горящих фрагментов», которые наблюдали очевидцы, — результат «возникновения пароциркониевой и других химических экзотермических реакций»[17].

По версии, предложенной К. П. Чечеровым[22], взрыв, имевший ядерную природу, произошёл не в шахте реактора, а в пространстве реакторного зала, куда активная зона вместе с крышкой реактора была выброшена паром, вырывающимся из разорванных каналов. Эта версия хорошо согласуется с характером разрушения строительных конструкций реакторного здания и отсутствием заметных разрушений в шахте реактора, она включена главным конструктором в его версию аварии ([9], с. 577). Первоначально версия была предложена для того, чтобы объяснить отсутствие топлива в шахте реактора, подреакторных и других помещениях (присутствие топлива оценивалось как не более 10 %). Однако последующие исследования и оценки дают основание считать, что внутри построенного над разрушенным блоком «саркофага» находится около 95 % топлива[23].

Альтернативные версии

Причины чернобыльской аварии невозможно понять без того, чтобы вникнуть в тонкости физики ядерных реакторов и технологии работы энергоблоков АЭС с РБМК-1000. В то же время, первичные данные об аварии не были известны широкому кругу специалистов. В этих условиях помимо версий, признанных экспертным сообществом, появилось много других, не требующих глубокого знания предмета[ источник не указан 298 дней ]. В первую очередь, это версии, предложенные специалистами из других областей науки и техники. Во всех этих гипотезах авария предстаёт результатом действия совершенно других физических процессов, чем те, которые лежат в основе работы АЭС, но хорошо знакомых авторам по их профессиональной деятельности.

Широкую известность получила версия, выдвинутая сотрудником Института физики Земли РАН Е. В. Барковским[24]. Эта версия объясняет аварию локальным землетрясением. Основанием для такого предположения является сейсмический толчок, зафиксированный примерно в момент аварии в районе расположения Чернобыльской АЭС. Сторонники этой версии утверждают, что толчок был зарегистрирован до, а не в момент взрыва (это утверждение оспаривается[25][26]), а сильная вибрация, предшествовавшая катастрофе, могла быть вызвана не процессами внутри реактора, а землетрясением. Кроме того, как установили геофизики, сам 4-й энергоблок стоит на тектоническом разломе земных плит, и даже более того — на узле разлома. Причиной того, что соседний третий блок не пострадал, считается тот факт, что испытания проводились только на 4-м энергоблоке. Сотрудники АЭС, находившиеся на других блоках, никаких вибраций не почувствовали. В документальном фильме-расследовании канала РЕН-ТВ «Чернобыль — обречённая АЭС» (2001 г.) также приводится один небезынтересный факт: ещё в ноябре 1985 г. директор ЧАЭС Виктор Брюханов в своём письме в Институт геофизики СССР сообщил об обнаружении в ходе геодезических измерений в 1985 г. сверхнормативного смещения фундаментной плиты 4-го энергоблока станции.

Существуют и конспирологические версии — например, что взрыв явился результатом диверсии[27], скрытой властями. Способы диверсии предполагаются различные: взрывчатка, подложенная под реактор, следы которой якобы были обнаружены на поверхности расплавов топливных масс; вставленные в активную зону специальные твэлы из высокообогащённого (оружейного) урана[28]; диверсия с применением пучкового оружия, установленного на искусственном спутнике Земли, либо так называемого дистанционного геотектонического оружия[29].

Сотрудником Института проблем безопасности АЭС Академии наук Украины Б. И. Горбачёвым была предложена версия[26][30], представляющая собою вольное публицистическое изложение общепринятого сценария аварии с обвинениями экспертов, расследовавших аварию, и персонала АЭС в совершении подлога в отношении первичных исходных данных. По версии Б. И. Горбачёва, взрыв произошёл из-за того, что операторы при подъёме мощности после её провала (в 00:28) извлекли слишком много управляющих стержней, делая это произвольно и бесконтрольно вплоть до момента взрыва и не обращая внимания на растущую мощность. На основании сделанных допущений автор выстроил новую хронологию событий. Однако эта хронология противоречит надёжно зарегистрированным данным и физике процессов, протекающих в ядерном реакторе[9][11][20][31][32].

Последствия аварии

Последствия

Непосредственно во время взрыва на 4-м энергоблоке погиб только один человек (Валерий Ходемчук), ещё один скончался утром от полученных травм (Владимир Шашенок). Впоследствии у 134 сотрудников ЧАЭС и членов спасательных команд, находившихся на станции во время взрыва, развилась лучевая болезнь, 28 из них умерли в течение следующих нескольких месяцев.

В 1:23 ночи на пульт дежурного ВПЧ-2 по охране ЧАЭС поступил сигнал о возгорании. К станции выехал дежурный караул пожарной части (на ЗИЛ-131), который возглавлял лейтенант внутренней службы Владимир Павлович Правик. Из Припяти на помощь выехал караул 6-й городской пожарной части, который возглавлял лейтенант Виктор Николаевич Кибенок. Руководство тушением пожара принял на себя майор Телятников Леонид Петрович, который получил очень высокую дозу облучения и выжил только благодаря операции на костном мозге в Англии в том же году. Его действиями было предотвращено распространение пожара. Были вызваны дополнительные подкрепления из Киева и близлежащих областей (так называемый «номер 3» — самый высокий номер сложности пожаров).

Из средств защиты у пожарных были только брезентовая роба (боёвка), рукавицы, каска. Звенья ГДЗС были в противогазах КИП-5. Из-за высокой температуры пожарные сняли их в первые минуты. К 4 часам утра пожар был локализован на крыше машинного зала, а к 6 часам утра был потушен. Всего в тушении пожара принимало участие 69 человек личного состава и 14 единиц техники. Наличие высокого уровня радиации было достоверно установлено только к 3:30, так как из двух имевшихся приборов на 1000 Р/ч один вышел из строя, а другой оказался недоступен из-за возникших завалов. Поэтому в первые часы аварии были неизвестны реальные уровни радиации в помещениях блока и вокруг него. Неясным оставалось и состояние реактора. Была версия, что реактор цел и нужно его охлаждать.

Пожарные не дали огню перекинуться на третий блок (у 3-го и 4-го энергоблоков единые переходы). Вместо огнестойкого покрытия, как было положено по инструкции, крыша машинного зала была залита обычным горючим битумом. Примерно к 2 часам ночи появились первые поражённые из числа пожарных. У них стали проявляться слабость, рвота, «ядерный загар». Помощь им оказывали на месте, в медпункте станции, после чего переправляли в МСЧ-126. Уже к утру 27 апреля радиационный фон в МСЧ-126 был запредельно высок, и, чтобы хоть как-то его снизить, медперсонал перенёс всю одежду пожарных в подвал медсанчасти. В тот же день первую группу пострадавших из 28 человек отправили самолётом в Москву, в 6-ю радиологическую больницу. Практически не пострадали водители пожарных автомобилей.

В первые часы после аварии, многие, по-видимому, не осознавали, насколько сильно повреждён реактор, поэтому было принято ошибочное решение обеспечить подачу воды в активную зону реактора для её охлаждения. Для этого требовалось вести работы в зонах с высокой радиацией. Эти усилия оказались бесполезны, так как и трубопроводы, и сама активная зона были разрушены. Другие действия персонала станции, такие, как тушение очагов пожаров в помещениях станции, меры, направленные на предотвращение возможного взрыва, напротив, были необходимыми. Возможно, они предотвратили ещё более серьёзные последствия. При выполнении этих работ многие сотрудники станции получили большие дозы радиации, а некоторые даже смертельные.

Правовые последствия

Мировой атомной энергетике в результате Чернобыльской аварии был нанесён серьёзный удар. С 1986 по 2002 год в странах Северной Америки и Западной Европы не было построено ни одной новой АЭС, что связано как с давлением общественного мнения, так и с тем, что значительно возросли страховые взносы и уменьшилась рентабельность ядерной энергетики.

В СССР было законсервировано или прекращено строительство и проектирование 10 новых АЭС, заморожено строительство десятков новых энергоблоков на действующих АЭС в разных областях и республиках.

В законодательстве СССР, а затем и России была закреплена ответственность лиц, намеренно скрывающих или не доводящих до населения последствия экологических катастроф, техногенных аварий. Информация, относящаяся к экологической безопасности мест, ныне не может быть классифицирована как секретная.

Согласно статье 10 Федерального закона от 20 февраля 1995 года № 24-ФЗ «Об информации, информатизации и защите информации» сведения о чрезвычайных ситуациях, экологические, метеорологические, демографические, санитарно-эпидемиологические и другие сведения, необходимые для обеспечения безопасного функционирования производственных объектов, безопасности граждан и населения в целом, являются открытыми и не могут относиться к информации с ограниченным доступом[46].

В соответствии со статьёй 7 Закона РФ от 21 июля 1993 года № 5485-1 «О государственной тайне» не подлежат отнесению к государственной тайне и засекречиванию сведения о состоянии экологии[47].

Действующим Уголовным кодексом РФ в статье 237 предусмотрена ответственность лиц за сокрытие информации об обстоятельствах, создающих опасность для жизни или здоровья людей[48]:

Статья 237. Сокрытие информации об обстоятельствах, создающих опасность для жизни или здоровья людей

1. Сокрытие или искажение информации о событиях, фактах или явлениях, создающих опасность для жизни или здоровья людей либо для окружающей среды, совершённые лицом, обязанным обеспечивать население и органы, уполномоченные на принятие мер по устранению такой опасности, указанной информацией, — наказываются штрафом в размере до трёхсот тысяч рублей или в размере заработной платы или иного дохода осуждённого за период до двух лет либо лишением свободы на срок до двух лет с лишением права занимать определённые должности или заниматься определённой деятельностью на срок до трёх лет или без такового.

2. Те же деяния, если они совершены лицом, занимающим государственную должность Российской Федерации или государственную должность субъекта Российской Федерации, а равно главой органа местного самоуправления либо если в результате таких деяний причинён вред здоровью человека или наступили иные тяжкие последствия, — наказываются штрафом в размере от ста тысяч до пятисот тысяч рублей или в размере заработной платы или иного дохода осуждённого за период от одного года до трёх лет либо лишением свободы на срок до пяти лет с лишением права занимать определённые должности или заниматься определённой деятельностью на срок до трёх лет или без такового.

Долговременные последствия

В результате аварии из сельскохозяйственного оборота было выведено около 5 млн га земель, вокруг АЭС создана 30-километровая зона отчуждения, уничтожены и захоронены (закопаны тяжёлой техникой) сотни мелких населённых пунктов, а также личный авто- и мототранспорт эвакуированных жителей, который тоже подвергся заражению и людям не разрешили уехать на нём.

Карта радиоактивного загрязнения нуклидом цезий-137 на 1996 год:

  закрытые зоны (более 40 Ки/км²)
  зоны постоянного контроля (15—40 Ки/км²)
  зоны периодического контроля (5—15 Ки/км²)
  1—5 Ки/км²

Перед аварией в реакторе четвёртого блока находилось 180—190 т ядерного топлива (диоксида урана). По оценкам, которые в настоящее время считаются наиболее достоверными, в окружающую среду было выброшено от 5 до 30 % от этого количества. Некоторые исследователи оспаривают эти данные, ссылаясь на имеющиеся фотографии и наблюдения очевидцев, которые показывают, что реактор практически пуст. Следует, однако, учитывать, что объём 180 т диоксида урана составляет лишь незначительную часть от объёма реактора. Реактор в основном был заполнен графитом. Кроме того, часть содержимого реактора расплавилась и переместилась через разломы внизу корпуса реактора за его пределы.

Кроме топлива, в активной зоне в момент аварии содержались продукты деления и трансурановые элементы — различные радиоактивные изотопы, накопившиеся во время работы реактора. Именно они представляют наибольшую радиационную опасность. Большая их часть осталась внутри реактора, но наиболее летучие вещества были выброшены наружу, в том числе:

  • все благородные газы, содержавшиеся в реакторе;
  • примерно 55 % иода в виде смеси пара и твёрдых частиц, а также в составе органических соединений;
  • цезий и теллур в виде аэрозолей.

Суммарная активность веществ, выброшенных в окружающую среду, составила, по различным оценкам, до 14·1018 Бк (примерно 38·107 Ки), в том числе[3]

  • 1,8 ЭБк иода-131;
  • 0,085 ЭБк цезия-137;
  • 0,01 ЭБк стронция-90;
  • 0,003 ЭБк изотопов плутония;
  • на долю благородных газов приходилось около половины от суммарной активности.

Загрязнению подверглось более 200 тыс. км², из них примерно 70 % на территории Белоруссии, России и Украины. Радиоактивные вещества распространялись в виде аэрозолей, которые постепенно осаждались на поверхность земли. Благородные газы рассеялись в атмосфере и не вносили вклада в загрязнение прилегающих к станции регионов. Загрязнение было очень неравномерным, оно зависело от направления ветра в первые дни после аварии. Наиболее сильно пострадали области, находящиеся в непосредственной близости от ЧАЭС: северные районы Киевской и Житомирской областей Украины, Гомельская область Белоруссии и Брянская область России. Радиация задела даже некоторые значительно удалённые от места аварии регионы, например Ленинградскую область, Мордовию и Чувашию — там выпали радиоактивные осадки. Большая часть стронция и плутония выпала в пределах 100 км от станции, так как они содержались в основном в более крупных частицах. Йод и цезий распространились на более широкую территорию.

Относительный вклад различных изотопов в радиоактивное загрязнение после аварии

С точки зрения воздействия на население в первые недели после аварии наибольшую опасность представляли радиоактивный йод, имеющий сравнительно малый период полураспада (восемь дней), и теллур. В настоящее время (и в ближайшие десятилетия) наибольшую опасность представляют изотопы стронция и цезия с периодом полураспада около 30 лет. Наибольшие концентрации цезия-137 обнаружены в поверхностном слое почвы, откуда он попадает в растения и грибы. Загрязнению также подвергаются насекомые и животные, которые ими питаются. Радиоактивные изотопы плутония и америция могут сохраниться в почве в течение сотен, а возможно и тысяч лет, однако их количество невелико ([3], с. 22). Количество америция-241 будет увеличиваться в связи с тем, что он образуется при распаде плутония-241[49].

В городах основная часть опасных веществ накапливалась на ровных участках поверхности: на лужайках, дорогах, крышах. Под воздействием ветра и дождей, а также в результате деятельности людей, степень загрязнения сильно снизилась, и сейчас уровни радиации в большинстве мест вернулись к фоновым значениям. В сельскохозяйственных областях в первые месяцы радиоактивные вещества осаждались на листьях растений и на траве, поэтому заражению подвергались травоядные животные. Затем радионуклиды вместе с дождём или опавшими листьями попали в почву, и сейчас они поступают в сельскохозяйственные растения, в основном через корневую систему. Уровни загрязнения в сельскохозяйственных районах значительно снизились, однако в некоторых регионах количество цезия в молоке всё ещё может превышать допустимые значения. Это относится, например, к Гомельской и Могилёвской областям в Белоруссии, Брянской области в России, Житомирской и Ровненской области на Украине.

Значительному загрязнению подверглись леса. В связи с тем, что в лесной экосистеме цезий постоянно рециркулирует, не выводясь из неё, уровни загрязнения лесных продуктов, таких как грибы, ягоды и дичь, остаются опасными. Уровень загрязнения рек и большинства озёр в настоящее время низкий, однако в некоторых «замкнутых» озёрах, из которых нет стока, концентрация цезия в воде и рыбе в течение следующих десятилетий может представлять опасность.

Загрязнение не ограничилось 30-километровой зоной. Было отмечено повышенное содержание цезия-137 в лишайнике и мясе оленей в арктических областях России, Норвегии, Финляндии и Швеции.

18 июля 1988 года на территории Белоруссии, подвергшейся загрязнению, был создан радиационно-экологический заповедник[50]. Наблюдения показали, что количество мутаций у растений и животных выросло, но незначительно, и природа успешно справляется с их последствиями. С другой стороны, снятие антропогенного воздействия положительно сказалось на экосистеме заповедника, что значительно превысило негативные последствия радиации. В результате природа стала восстанавливаться быстрыми темпами, выросли популяции животных, увеличилось многообразие видов растительности[51][52].

Дозы облучения

Средние дозы, полученные разными категориями населения[3]
Категория Период Количество, чел. Доза (мЗв)
Ликвидаторы 1986—1989 600 000 около 100
Эвакуированные   116 000  
Жители зон со «строгим контролем» 1986—2005 270 000 более 50
Жители других загрязнённых зон 1986—2005 5 000 000 10—20

Наибольшие дозы получили примерно 1000 человек, находившихся рядом с реактором в момент взрыва и принимавших участие в аварийных работах в первые дни после него. Эти дозы варьировались от 2 до 20 грэй (Гр) и в ряде случаев оказались смертельными.

Большинство ликвидаторов, работавших в опасной зоне в последующие годы, и местных жителе


Поделиться с друзьями:

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.052 с.