Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Мейоз – деление половых клеток: фазы, значение.

2018-01-04 877
Мейоз – деление половых клеток: фазы, значение. 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Мейоз — основной этап гаметогенеза, т.е. образования половых клеток. Образование гамет включает и митоз, и мейоз. Митоз обеспечивает накопление в половых железах большого количества незрелых клеток, которые впоследствии дают начало зрелым половым клеткам. Именно в результате мейоза происходит их созревание.

Во время мейоза происходит не одно (как при митозе), а два следующих друг за другом клеточных деления. Первому мейотическому делению предшествует интерфаза I — фаза подготовки клетки к делению, в это время происходят те же процессы, что и в интерфазе митоза.

Первое мейотическое деление называют редукционным, так как именно во время этого деления происходит уменьшение числа хромосом, то есть диплоидный набор хромосом становится гаплоидным, однако хромосомы остаются двухроматидными. Сразу же после первого деления мейоза совершается второе — обычный митоз. Это деление называют эквационным, так как во время этого деления хромосомы становятся однохроматидными.

Биологическое значение мейоза:

Благодаря мейозу происходит редукция числа хромосом. Из одной диплоидной клетки образуется 4 гаплоидных.

Благодаря мейозу образуются генетически различные клетки, как между собой, так и с исходной материнской клеткой. Генотипы этих клеток различны, т.к. в процессе мейоза происходит перекомбинация генетическогоматериала за счет кроссинговера, случайного, независимого расхождения гомологичных хромосом, а затем и хроматид.

Благодаря мейозу поддерживается постоянство диплоидного набора хромосом в соматических клетках. В процессе оплодотворения гаплоидные гаметы сливаются, образуя диплоидную зиготу. Зигота делится митозом, образуются соматические клетки с диплоидным набором хромосом.

I и II деление мейоза складываются из тех же фаз, что и митоз, но сущность изменений в наследственном аппарате другая Самая продолжительная и сложная фаза мейоза. Состоит из ряда последовательных стадий.

Лептотена (2n; 4с). Стадия тонких нитей. Хромосомы слабо конденсированы. Они уже двухроматидные, но настолько сближены, что имеют вид длинных одиночных тонких нитей. Теломеры хромосом прикреплены к ядерной мембране с помощью особых структур — прикрепительных дисков. Стадия сливающихся нитей. Гомологичные хромосомы начинают притягиваться друг к другу сходными участками и конъюгируют. Конъюгацией называют процесс тесного сближения гомологичных хромосом. (Процесс конъюгации также называют синапсисом.) Конъюгация может начинаться в разных точках хромосом (чаще всего с концов, иногда с центромер), а затем распространяться по всей длине. Полагают, что каждый ген приходит в соприкосновение с гомологичным ему геном другой хромосомы. Пару конъюгирующих хромосом называют бивалентом. Биваленты продолжают укорачиваться и утолщаться.

Стадия толстых нитей. Процесс спирализации хромосом продолжается, причем в гомологичных хромосомах он происходит синхронно. Становится хорошо заметно, что хромосомы двухроматидные. Таким образом, каждый бивалент образован четырьмя хроматидами. Поэтому его называют тетрадой. В пахитене наблюдается особенно тесный контакт между хроматидами. Важнейшим событием пахитены является кроссинговер — обмен участками гомологичных хромосом, что приводит к образованию перекреста между несестринскими хроматидами бивалента. В пахитене перекресты еще не видны. Они проявляются позднее в виде хиазм. Кроссинговер приводит к первой во время мейоза рекомбинации генов.

Метафаза 1(2n; 4с) - стадия двойных нитей. Хромосомы в бивалентах перекручиваются и начинают отталкиваться друг от друга. Процесс отталкивания начинается в области центромеры и распространяется по всей длине бивалентов. Однако они все еще остаются связанными друг с другом в некоторых точках. Их называют хиазмы [9]. Эти точки появляются в местах кроссинговера. В ходе гаметогенеза у человека может образовываться до 50 хиазм.

Хромосомы сильно укорачиваются и утолщаются за счет максимальной спирализации хроматид, а затем отделяются от ядерной оболочки. Происходит сползание хиазм к концам хроматид. Каждый бивалент содержит четыре хроматиды, которые удерживаются друг около друга благодаря наличию хиазм, переместившихся к их концам.

В конце профазы I исчезают ядерная оболочка и ядрышко. Биваленты перемещаются в экваториальную плоскость. Центриоли (если они есть) перемещаются к полюсам клетки, и формируется веретено деления.

Заканчивается формирование веретена деления. Спирализация хромосом максимальна. Биваленты располагаются в плоскости экватора. Причем центромеры гомологичных хромосом обращены к разным полюсам клетки. Расположение бивалентов в экваториальной плоскости равновероятное и случайное, то есть каждая из отцовских и материнских хромосом может быть повернута в сторону того или другого полюса. Это создает предпосылки для второй за время мейоза рекомбинации генов.

Центромеры хромосом прикрепляются к нитям веретена деления, но не делятся.

Анафаза I (2n; 4с). Нити веретена деления тянут центромеры, соединяющие две хроматиды к полюсам веретена деления. Таким образом, к полюсам расходятся целые хромосомы, а не хроматиды, как при митозе. У каждого полюса оказывается половина хромосомного набора. Причем, пары хромосом расходятся так, как они располагались в плоскости экватора во время метафазы. В результате возникают самые разнообразные сочетания отцовских и материнских хромосом (происходит перемешивание хромосом отца и матери), происходит вторая рекомбинация генетического материала.

Телофаза I (1n; 2с). У животных и некоторых растений хроматиды деспирализуются, вокруг них формируется ядерная оболочка. Затем происходит деление цитоплазмы (у животных) или образуется разделяющая клеточная стенка (у растений). У многих растений клетка из анафазы I сразу же переходит в профазу II.Таким образом, в результате первого деления мейоза:произошла редукция (уменьшение) числа хромосом с диплоидного до гаплоидного;дважды произошла рекомбинация генов (за счет кроссинговера и случайного и независимого расхождения хромосом в анафазе).

Второе деление мейоза

Интерфаза II (1n; 2с). Характерна только для животных клеток. Кратковременна, репликация ДНК не происходит.

Вторая стадия мейоза включает также профазу, метафазу, анафазу и телофазу. Она протекает так же, как обычный митоз.

Профаза II (1n; 2с). Хромосомы спирализуются, ядерная мембрана и ядрышки разрушаются, центриоли, если они есть, перемещаются к полюсам клетки, формируется веретено деления.

Метафаза II (1n; 2с.Формируются метафазная пластинка и веретено деления: хромосомы располагаются в плоскости экватора, нити веретена деления прикрепляются к центромерам, которые ведут себя как двойные структуры.

Анафаза II (2n; 2с). Центромеры хромосом делятся, хроматиды становятся самостоятельными хромосомами, и нити веретена деления растягивают их к полюсам клетки. Число хромосом в клетке становится диплоидным, но на каждом полюсе формируется гаплоидный набор. Поскольку в метафазе 2 хроматиды хромосом располагаются в плоскости экватора случайно по отношению к полюсам клетки, в анафазе происходит третья рекомбинация генетического материала.

Телофаза II (1n; 1с). Нити веретена деления исчезают, хромосомы деспирализуются, вокруг них восстанавливается ядерная оболочка, делится цитоплазма. Таким образом, в результате двух последовательных делений мейоза диплоидная клетка дает начало четырем дочерним, генетически различным клеткам с гаплоидным набором хромосом.

2. Строение и функционирование дыхательной системы человека (учебник биологии 8 класс, стр.158-170)

Источником энергии в организме человека являются органические вещества. В клетках происходит их бескислородное окисление (гликолиз) и кислородное окисление (дыхание), которое сопровождается потреблением кислорода, выделением углекислого газа и энергии. Различают внешнее (легочное) дыхание, при котором происходит газообмен между атмосферным воздухом и воздухом альвеол, и тканевое, или внутреннее дыхание, связанное с потреблением кислорода митохондриями выделением углекислого газа.

К дыхательной системе относят дыхательные пути и легкие. Дыхательные пути представлены носовыми полостями, носоглоткой, гортанью, трахеей и бронхами.

Хрящевая перегородка разделяет носовые полости, в каждой три носовых хода (рис. 205). Здесь воздух согревается кровью, протекающей по многочисленным капиллярам, увлажняется и частично очищается от пыли и микроорганизмов, анализируется с помощью обонятельного анализатора, ресничный эпителий способствует продвижению слизи к носоглотке. Затем через хоаны воздух попадает в носоглотку, в ротовую часть глотки и гортань. Гортань проводит воздух и функционирует как голосовой аппарат. Имеет парные и три непарных (щитовидный, надгортанник и перстневидный) хряща. В средней части гортани располагаются две пары складок, образующих голосовые связки, натянутые между щитовидным и черпаловидными хрящами. При дыхании голосовая щель открыта, при глотании надгортанник закрывает вход в гортань. Внизу гортань переходит в трахею. Трахея — мышечная трубка с хрящевыми полукольцами, длиной 10-15 см. Снизу делится на два бронха, последние в легких образуют бронхиальные деревья, состоящие из бронхиол.

Легкие располагаются в грудной полости, правое состоит из трех, левое легкое — из двух долей. Морфологической и функциональной единицей легкого является ацинус — система разветвления одной концевой бронхиолы (рис. 206). По бронхиолам воздух проникает в альвеолярные ходы и в альвеолы. Внутренняя поверхность альвеол покрыта сурфактантом, бактерицидной пленкой, которая к тому же препятствует слипанию альвеол. Число альвеол достигает 700 млн., общая их поверхность до 120 м2. Каждое легкое погружено в серозный мешок. Он образован внутренним, висцеральным листком, покрывающим легкое и наружным — париетальным, срастающимся со стенкой грудной полости. Между ними плевральная полость с давлением ниже атмосферного и серозной жидкостью (рис. 207). Если принять атмосферное давление за нулевое, то при вдохе давление в плевральной полости равно — 9 мм рт. ст., при выдохе — 4 мм рт. ст. Если при ранении давление в плевральной полости становится равным атмосферному, легкое перестает растягиваться при вдохе, это явление называется пневмотораксом.

Во время вдоха поступающий в легкие воздух смешивается с воздухом, уже находившимся в дыхательных путях после выдоха, т.к. даже альвеолы полностью не спадаются при выдохе. Газообмен в легких и тканях подчиняется законам движения газов в соответствии с их парциальным давлением. Парциальное давление — давление газа, которое приходится на его долю от общего давления смеси газов. В альвеолах парциальное давление кислорода 100 мм рт. ст., в венозной крови — 40 мм рт. ст., кислород переходит из альвеолярного воздуха в кровь. Парциальное давление углекислого газа выше в венозной крови (46 мм рт. ст.), чем в альвеолярном воздухе (40 мм рт. ст.) и он диффундирует в альвеолы.

Кислород в крови находится в растворенном состоянии (менее 1%), и в соединении с Hb (99%) в форме оксигемоглобина Hb(О2)4.

Около 10% углекислого газа транспортируется в форме карбгемоглобина НbСО2; большая часть растворяется в воде и образует Н2СО3, которая реагирует с солями К+ и Na+, превращаясь в гидрокарбонаты. В составе КНСО3 эритроцитов (меньшая часть) и NaНСО3 плазмы (большая часть) углекислый газ транспортируется к легким.

Глубина и частота дыхания зависит от потребностей организма в кислороде, от содержания в крови углекислого газа. Приспособление дыхательной системы к запросам организма осуществляется с помощью нервной и гуморальной регуляции.

Нервная регуляция осуществляется дыхательным центром продолговатого мозга, в котором различают отдел вдоха и отдел выдоха. Отделу вдоха свойственнаавтоматия, раз в 4 с здесь возникает возбуждение, которое проводится к дыхательным мышцам, происходит вдох. При растяжении альвеол происходит возбуждение рецепторов в их стенках, возбуждение проводится по блуждающему нерву к центру выдоха и тормозится центр вдоха. Происходит выдох, стенки альвеол спадаются, происходит возбуждение рецепторов на сжатие, от которых импульсы проводятся в центр вдоха и начинается вдох. Таким образом, вдох рефлекторно вызывает выдох, а выдох — вдох. На дыхательные движения оказывает влияние и кора больших полушарий, человек может сознательно изменять частоту и глубину дыхательных движений.

К защитным дыхательным рефлексам относятся чихание и кашель. При раздражении рецепторов носовой полости или гортани возбуждение по чувствительным нейронам проводится в дыхательный центр продолговатого мозга, анализируется и по двигательным нейронам проводится к дыхательным мышцам, происходит чихание или кашель и раздражающие вещества удаляются из организма.

Гуморальная регуляция. Дыхательный центр чрезвычайно чувствителен к концентрации углекислого газа в крови, при увеличении концентрации углекислого газа дыхание становится более глубоким и частым. Кроме того, в стенках аорты находятся хеморецепторы, реагирующие на концентрацию кислорода. При понижении концентрации кислорода в крови частота и глубина дыхательных движений увеличивается.

Билет №16

1. Вид, его критерии и структура (Учебник биологии, 9 класс 1 раздел, глава 5,§ 10;

Вид — совокупность особей, обладающих наследственным сходством морфологических, физиологических и биохимических особенностей, свободно скрещивающихся и дающих плодовитое потомство, приспособленных к определенным условиям жизни и занимающих в природе определенную область — ареал.

Признаки, по которым виды отличаются друг от друга, называются критериями вида. Различают следующие критерии вида.

Морфологический критерий подразумевает внешнее сходство особей, относящихся к одному виду. Но иногда особи одного вида очень сильно отличаются (такса и дог) или наоборот, есть виды, морфологически почти неотличимые, так называемые виды-двойники, которые не скрещиваются, генетически изолированы. Например, два вида черных крыс: у одного вида в кариотипе 38 хромосом, у другого — 42. Следовательно, одного морфологического критерия недостаточно для определения видовой принадлежности.

Основным является генетический критерий: для каждого вида характерен свой кариотип — свой хромосомный набор. Виды обычно отличаются по числу и строению хромосом. Именно этот критерий обеспечивает генетическую изоляцию, нескрещиваемость между особями разных видов. Даже если появляются межвидовые гибриды, они бесплодны, нарушается процесс образования половых клеток. Но иногда и этот критерий подводит, так как плодовитое потомство может появляться при скрещивании особей, относящихся к разным видам.

Особи одного вида сходны по всем физиологическим процессам — питанию, дыханию, выделению, размножению, что лежит в основе физиологического критерия. Особенно важны отличия в физиологии размножения: в строении полового аппарата, в сроках размножения.

Биохимический критерий — сравнение органических макромолекул у различных видов, в первую очередь сравнение ДНК и белков. По сходству в строении ДНК и белков можно с достаточной вероятностью показать, насколько близкими родственниками являются те или иные виды. Например, гемоглобин шимпанзе по последовательности аминокислот не отличается от гемоглобина человека.

Географический критерий — это территория, на которой обитает данный вид (ареал). У некоторых видов-эндемиков ареал небольшой, есть виды — космополиты, распространенные повсеместно. Но области распространения различных видов часто перекрываются, так что этот критерий не может быть решающим.

Каждый вид приспособлен к определенным условиям существования, к определенным экологическим факторам, которые составляют основу экологического критерия. Например, белый медведь приспособлен к одним экологическим факторам, бурый — к другим.

Для установления видовой принадлежности нельзя опираться на один из критериев, необходимо учитывать их совокупность.

Каждый вид занимает более или менее обширный ареал. Существование определенных границ распространения вида не означает, что все особи свободно перемещаются внутри ареала.

Степень подвижности особей выражается расстоянием, на которое может перемещаться животной, т.е. радиусом его индивидуальной активности. У растений этот радиус определяется расстоянием на которое летит пыльца, смена или вегетативные части.

Особи любого вида распределены внутри видового ареала неравномерно. Участки территории с относительно высокой плотностью населения чередуются с участками, где численность вида низкая или особи данного вида совсем отсутствуют. Поэтому вид представляет собой совокупность отдельных групп организмов – популяций.

Совокупность особей, длительно проживающих на определенной части ареала, относительно обособленно от других совокупностей называется популяцией.

 

2. Общая характеристика царства «Животные». Особенности строения и жизнедеятельности. (Учебник биологии, 9 класс 1 раздел, глава 5, § 10;

Царство Животные делят на подцарство Простейшие (Одноклеточные) и подцарство Многоклеточные. Основой строения всех животных является клетка, состоящая из оболочки, цитоплазмы и ядра. Жидкая часть цитоплазмы, гиалоплазма, содержит органоиды, выполняющие определенные функции (митохондрии, рибосомы, эндоплазматическую сеть, комплекс Гольджи, центриоли и др.). У одноклеточных животных клетка является целым организмом, у многоклеточных происходит специализация клеток, появляются ткани, органы, системы органов.

Систематика животных является предметом дискуссий. В последнее время животных подцарства Простейшие разделяют на 7 типов, подцарства Многоклеточные — на 20 типов. В отличие от растений большинство животных активно передвигается, большинство многоклеточных животных имеют нервную систему.

Питание. Для животных характерен голозойный и гетеротрофный тип питания, то есть использование готовых органических веществ, которые захватываются внутрь тела, а не поглощаются осмотическим путем. Но среди одноклеточных животных есть организмы со смешанным, миксотрофным типом питания: на свету они способны с помощью фотосинтеза образовывать органические вещества, используя углерод неорганических соединений (автотрофное питание), могут питаться и готовыми органическими веществами.

Дыхание. Подавляющее большинство животных — аэробные организмы, которым необходим кислород для процессов окисления, но есть организмы, которые получают энергию путем брожения, кислород им не нужен, это анаэробные животные.

Выделение. В результате жизнедеятельности в организмах образуются вещества, для организма ненужные. Выведение таких веществ происходит с помощью многих систем органов — дыхательной, пищеварительной, через покровы, но, кроме того, формируется специальная, выделительная система, которая отвечает за выведение продуктов метаболизма (обмена веществ).

Размножение. У животных существует два типа размножения — половое и бесполое. При различных формах бесполого размножения происходит быстрое увеличение численности популяции, но дочерние особи генетически не отличаются (или редко отличаются) от материнского организма.

При половом размножении каждый дочерний организм имеет уникальный генотип, попадает под контроль естественного отбора, при этом выживают особи с наиболее удачными генотипами для конкретных условий существования. Это помогает приспособиться к изменяющимся условиям среды.

Многообразие. Известно около 1,5 млн. видов животных.

 

 

Билет №17

1. Онтогенез, его закономерности. Периоды онтогенеза. (Учебник биологии, 9 класс 3 раздел, глава 13, § 32,33)

Онтогенез, или индивидуальное развитие — совокупность взаимосвязанных событий, закономерно совершающихся в процессе осуществления организмом жизненного цикла от момента образования зиготы до смерти. Изучение вопросов, связанных с индивидуальным развитием организмов, занимается эмбриология, основоположником которой считается академик Российской Академии К.М.Бэр. Основы учения об индивидуальном развитии организмов были изложены в его труде "История развития животных", опубликованном в 1828 г.

Индивидуальное развитие заключается в реализации организмом наследственной информации, полученной им от родителей.

Представители каждого вида организмов проходят определенные стадии развития от зиготы одного поколения до зиготы следующего. Такую последовательность стадий развития называют жизненным циклом. Жизненные циклы отличаются большим разнообразием, нередко связаны с чередованием поколений, различных типов размножения, с разными вариантами редукционного деления у растений, одноклеточных и многоклеточных животных, полиморфизмом особей.

Онтогенез — это непрерывный процесс развития особи, но для удобств изучения его делят на определенные периоды и стадии (у многоклеточных животных, размножающихся половым способом): эмбриональный — от образования зиготы до рождения или же выхода из яйцевых оболочек, который состоит из ряда стадий:

- одноклеточная (зигота);

Дробление. После оплодотворения зигота начинает делиться. Дроблением называют ряд последовательных митотических делений зиготы, в результате которых огромный объем цитоплазмы яйца разделяется на многочисленные, содержащие ядра клетки меньшего размера (рис. 312). В результате дробления образуются клетки, которые называют бластомерами. Важной отличительной особенностью дробления от обычного деления является то, что вновь образовавшиеся бластомеры не увеличиваются в размерах. Биологическое значение процесса дробления сводится к следующему:

-благодаря повторяющимся циклам репродукции, происходит размножение генотипа зиготы;

-происходит накопление клеточной массы для дальнейших преобразований, т.е. зародыш из одноклеточного превращается в многоклеточный.

Гаструляця. После того как сформировалась бластула, начинается новый этап эмбриогенеза — гаструляция (образование зародышевых листков). Для гаструляции характерны интенсивные перемещения отдельных клеток и клеточных масс. Деление клеток при гаструляции отсутствует или выражено очень слабо. В результате гаструляции образуется двухслойный, а затем трехслойный зародыш (у большинства животных) — гаструла (рис. 315). Первоначально образуются наружный (эктодерма) и внутренний (энтодерма). Позже между экто- и энтодермойзакладывается третий зародышевый листок — мезодерма.

Гисто- и органогенез. Процесс формирования органов в эмбриональном развитии называют органогенезом. В построении любого органа участвуют несколько тканей. Поэтому стадия органогенеза является и стадией гистогенеза.

В органогенезе можно выделить две фазы:

-нейруляция — образование комплекса осевых органов (нервная трубка, хорда, кишечная трубка и мезодерма сомитов), в который вовлекается почти весь зародыш;

-построение остальных органов, приобретение различными участками тела типичной для них формы и черт внутренней организации, установление определенных пропорций (пространственно ограниченные процессы).

По теории зародышевых листков Карла Бэра, возникновение органов обусловлено преобразованием того или иного зародышевого листка — экто-, мезо- или энтодермы. Некоторые органы могут иметь смешанное происхождение, то есть они образованы при участии сразу несколько зародышевых листков. Например, мускулатура пищеварительного тракта является производным мезодермы, а его внутренняя выстилка — производное энтодермы. Однако, несколько упрощая, происхождение основных органов и их систем все-таки можно связать с определенными зародышевыми листками.

Постэмбриональный период — от выхода из яйцевых оболочек или рождения до смерти организма.

Постэмбриональное развитие включает в себя:рост организма; установление окончательных пропорций тела;переход систем органов на режим взрослого организма (в частности, половое созревание).

Типы постэмбрионального развития

Различают два основных типа постэмбрионального развития:

Прямое, при котором из тела матери или яйцевых оболочек выходит особь, отличающаяся от взрослого организма только меньшим размером (птицы, млекопитающие). Различают: неличиночный (яйцекладный) тип, при котором зародыш развивается внутри яйца (рыбы, птицы); внутриутробный тип, при котором зародыш развивается внутри организма матери и связан с ним через плаценту (плацентарные млекопитающие).

С превращением (метаморфозом), при котором из яйца выходит личинка, устроенная проще взрослого животного (иногда сильно отличающаяся от него); как правило, она имеет специальные личиночные органы, отсутствующие у взрослого животного, и не способна к размножению; часто личинка ведет иной образ жизни, чем взрослое животное (насекомые, некоторые паукообразные, амфибии).

Примером животных, имеющих постэмбриональное развитие с метаморфозом, служат бесхвостые земноводные (рис. 319). Из яйцевых оболочек земноводных выходит личинка — головастик, больше напоминающий рыбу, чем земноводное. Он имеет обтекаемую форму тела, хвостовой плавник, жаберные щели и жабры, органы боковой линии, двухкамерное сердце, один круг кровообращения. Со временем, под влиянием гормона щитовидной железы, головастик претерпевает метаморфоз. У него рассасывается хвост, появляются конечности,

исчезает боковая линия, развиваются легкие и второй круг кровообращения, то есть постепенно он приобретает признаки, характерные для земноводных.

2. Модификационная изменчивость. Ее свойстваЧто такое норма реакции. (Учебник биологии, 9 класс 4 раздел, глава 15, § 42;

Большую роль в формировании признаков организмов играет среда его обитания. Каждый организм развивается и обитает в определенной среде, испытывая на себе действие ее факторов, способных изменять морфологические и физиологические свойства организмов, т.е. их фенотип.

Классическим примером изменчивости признаков под действием факторов внешней среды является разнолистность у стрелолиста: погруженные в воду листья имеют лентовидную форму, листья, плавающие на поверхности воды, — округлую, а находящиеся в воздушной среде, — стреловидные. Если же все растение оказывается полностью погруженным в воду, его листья только лентовидные. Некоторые виды саламандр темнеют на темном грунте и светлеют на светлом. Под действием ультрафиолетовых лучей у людей (если они не альбиносы) возникает загар в результате накопления в коже меланина, причем у разных людей интенсивность окраски кожи различна. Если же человек лишен действия ультрафиолетовых лучей, изменение окраски кожи у него не происходит.

Таким образом, изменения ряда признаков организмов вызывается действием факторов внешней среды. Причем эти изменения не наследуются. Так, если получить потомство от тритонов, выращенных на темном грунте, и поместить их на светлый, то все они будут иметь светлую окраску, а не темную, как их родители. Или, собрав семена со стрелолиста, выросшего в условиях полного погружения в воду, и высадив их в мелком водоеме, мы получим растения, листья которых будут иметь форму в зависимости от условий среды (лентовидные, округлые, стреловидные). То есть, данный вид изменчивости не затрагивает генотип и поэтому не передается потомкам.

Изменчивость организмов, возникающая под влиянием факторов внешней среды и не затрагивающая генотипа, называется модификационной.

Модификационная изменчивость носит групповой характер, то есть все особи одного вида, помещенные в одинаковые условия, приобретают сходные признаки. Например, если сосуд с эвгленами зелеными поместить в темноту, то все они утратят зеленую окраску, если же вновь выставить на свет — все опять станут зелеными.

Модификационная изменчивость является определенной, то есть всегда соответствует факторам, которые ее вызывают. Так, ультрафиолетовые лучи изменяют окраску кожи человека (так как усиливается синтез пигмента), но не изменяют пропорций тела, а усиленные физические нагрузки влияют на степень развития мышц, а не на цвет кожи.

Однако не следует забывать, что развитие любого признака определяется прежде всего генотипом. Вместе с тем, гены определяют возможность развития признака, а его появление и степень выраженности во много м определяется условиями среды. Так, зеленая окраска растений зависит не только от генов, контролирующих синтез хлорофилла, но и от наличия света. При отсутствии света хлорофилл не синтезируется.

Несмотря на то, что под влиянием условий внешней среды признаки могут изменяться, эта изменчивость не беспредельна. Даже в случае нормального развития признака степень его выраженности различна. Так, на поле пшеницы можно обнаружить растения с крупными колосьями (20 см и более) и очень мелкими (3-4 см). Это объясняется тем, что генотип определяет определенные границы, в пределах которых может происходить изменение признака. Степень варьирования признака, или пределы модификационной изменчивости, называют нормой реакции. Норма реакции выражается в совокупности фенотипов организмов, формирующихся на основе определенного генотипа под влиянием различных факторов среды. Как правило, количественные признаки (высота растений, урожайность, размер листьев, удойность коров, яйценоскость кур) имеют более широкую норму реакции, то есть могут изменяться в широких пределах, нежели качественные признаки (цвет шерсти, жирность молока, строение цветка, группа крови).

Знание нормы реакции имеет большое значение для практики сельского хозяйства

Таким образом, модификационная изменчивость характеризуется следующими основными свойствами:

-ненаследуемость;

-групповой характер изменений;

-соответствие изменений действию фактора среды;

-зависимость пределов изменчивости от генотипа.

 

 

Билет №18

1. Общие закономерности развития. Биогенетический закон (Учебник биологии, 9 класс 3 раздел, глава 13,§3 4;

Онтогенез, или индивидуальное развитие — совокупность взаимосвязанных событий, закономерно совершающихся в процессе осуществления организмом жизненного цикла от момента образования зиготы до смерти. Изучение вопросов, связанных с индивидуальным развитием организмов, занимается эмбриология, основоположником которой считается академик Российской Академии К.М.Бэр. Основы учения об индивидуальном развитии организмов были изложены в его труде "История развития животных", опубликованном в 1828 г.

Индивидуальное развитие заключается в реализации организмом наследственной информации, полученной им от родителей.

Представители каждого вида организмов проходят определенные стадии развития от зиготы одного поколения до зиготы следующего. Такую последовательность стадий развития называют жизненным циклом. Жизненные циклы отличаются большим разнообразием, нередко связаны с чередованием поколений, различных типов размножения, с разными вариантами редукционного деления у растений, одноклеточных и многоклеточных животных, полиморфизмом особей.

Развитие зарадышей у животных, относящихся к одному типу во многом сходно. У всех хордовых животных в эмбриональном периоде закладывается осевой скелет – хорда, возникает нервная трубка, а в переднем отделе глотки образуются жаберные щели.план строения хордовых также одинаков. Все это подтверждает српаведливость сформулированного К. Бэром закона зародышевого сходства: «Эмбрионы обнаруживают, уже начиная с самых ранних стадий, известное общее сходство в пределах типа». Сходство зародышей разных систематических групп доказывает общность происхождения. В дальнейшем в строении зародышей проявляется признаки класса, рода, вида, и наконец признаки, характерные для данной особи.

Появление в эмбриональном периоде развития современных животных признакаов, свойственных их далеким предкам, отражает эволюционные преобразования в строении органов. Так, например факт закладки частей жаберного аппарата у зародышей наземных позвоночных объясняется их происхождением от рыбообразных предков.

Существует глубокая связь между индивидуальным развитием организмов и их историческим развитием. Ф. Мюллер и Э.Геккель в 19 веке сформулировали биогенетичекий закон: «онтогенез каждой особи, есть краткое и быстрое повторение филогенеза вида, к которому эта особь относится».

 


Поделиться с друзьями:

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.084 с.