Атмосфера Земли. Магнитосфера. Радиационные пояса. — КиберПедия 

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Атмосфера Земли. Магнитосфера. Радиационные пояса.

2017-12-21 333
Атмосфера Земли. Магнитосфера. Радиационные пояса. 0.00 из 5.00 0 оценок
Заказать работу

Атмосфе́ра (от. др.-греч. ἀτμός — пар и σφαῖρα — шар) — газовая оболочка (геосфера), окружающая планету Земля. Внутренняя её поверхность покрывает гидросферу и частично кору, внешняя граничит с околоземной частью космического пространства.

Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в трёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера(около четырех миллиардов лет назад). На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком, водяным паром). Так образовалась вторичная атмосфера(около трех миллиардов лет до наших дней). Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами: утечка легких газов (водорода и гелия) в межпланетное пространство; химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов. Постепенно эти факторы привели к образованию третичной атмосферы, характеризующейся гораздо меньшим содержанием водорода и гораздо большим — азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

 

Магнитосфе́ра — область пространства вокруг небесного тела, в которой поведение окружающей тело плазмы определяется магнитным полем этого тела. Альтернативное определение: Магнитосфе́ра — область пространства вокруг планеты или другого намагниченного небесного тела, которая образуется, когда поток заряженных частиц, например солнечного ветра, отклоняется от своей первоначальной траектории под воздействием внутреннего магнитного поля этого тела. Форма и размеры магнитосферы определяются силой внутреннего магнитного поля этого небесного тела и давлением окружащей плазмы (солнечного ветра). Все планеты, имеющие собственное магнитное поле, обладают магнитосферой: Земля, Юпитер, Сатурн, Уран и Нептун. Меркурий и Марс обладают очень слабыми магнитосферами, а также Ганимед, один из спутников Юпитера (но его магнитосфера целиком находится в пределах магнитосферы Юпитера, что приводит к их сложным внутренним взаимодействиям). Ионосферы слабо намагниченных планет, как например Венера, частично отклоняют поток солнечного ветра, но они не имеют магнитосферы как таковой.

Термин магнитосфера также используется для описания регионов, где доминирует магнитное поле других небесных тел, например звёзд, пульсаров и пр.

Радиационный пояс — область магнитосфер планет, в которой накапливаются и удерживаются проникшие в магнитосферу высокоэнергичные заряженные частицы (в основном протоны и электроны). Радиационный пояс Ван Аллена, от англ. Van Allen radiation belt.

Внутри магнитосферы, как и в любом дипольном поле, есть области, недоступные для частиц с кинетической энергией E, меньше критической. Те же частицы с энергией E<Екр, которые все-таки уже там находятся, не могут эти области покинуть. Эти запрещённые области магнитосферы называются зонами захвата. В зонах захвата дипольного (квазидипольного) поля Земли действительно удерживаются значительные потоки захваченных частиц (прежде всего, протонов и электронов).

Радиационный пояс Земли (РПЗ) в западной литературе обычно называется поясом Ван-Аллена. Радиационный пояс Земли был открыт американскими и советскими учёными (С. Н. Вернов и А. Е. Чудаков) в 1957—1958 годах и представляет собой в первом приближении тороид, в котором выделяется две области:

внутренний радиационный пояс на высоте ~ 4000 км, состоящий преимущественно из протонов с энергией в десятки МэВ;

внешний радиационный пояс на высоте ~ 17 000 км, состоящий преимущественно из электронов с энергией в десятки кэВ.

Зависимость положения нижней границы радиационного пояса — долготная. Над Атлантикой возрастание интенсивности начинается на высоте 500 км, а над Индонезией на высоте 1300 км. Если те же графики построить в зависимости от магнитной индукции В, то все измерения уложатся на одну кривую, что ещё раз подтверждает магнитную природу захвата.

Между внутренним и внешним радиационными поясами имеется щель, расположенная в интервале от 2 до 3 радиусов Земли. Потоки частиц во внешнем поясе больше, чем во внутреннем. Различен и состав частиц: во внутреннем поясе протоны и электроны, во внешнем — электроны. Применение неэкранированных детекторов существенно расширило сведения о радиационных поясах. Были обнаружены электроны и протоны с энергией несколько десятков и сот килоэлектронвольт соответственно. Эти частицы имеют существенно иное, по сравнению с проникающими, пространственное распределение.

Максимум интенсивности протонов низких энергий расположен на расстояниях L~3 от центра Земли. Малоэнергичные электроны заполняют всю область захвата. Для них нет разделения на внутренний и внешний пояса. Частицы с энергией десятки кэВ непривычно относить к космическим лучам, однако радиационные пояса представляют собой единое явление и должны изучаться в комплексе с частицами всех энергий.

Поток протонов во внутреннем поясе довольно устойчив во времени. Первые эксперименты показали, что электроны высокой энергии (E>1-5 МэВ) сосредоточены во внешнем поясе. Электроны с энергией меньше 1 МэВ заполняют почти всю магнитосферу. Внутренний пояс очень стабилен, тогда как внешний испытывает резкие колебания.

 

 

35. Химия: основные законы (сохранения массы, постоянство состава, периодический закон Менделеева)

Химия – экспериментальная наука. В химии успешно используется индуктивный подход, согласно которому на основе имеющихся фактов выявляются более или менее общие закономерности, а затем создаются общие модели.

В настоящее время химия состоит из следующих разделов: неорганическая химия, органическая химия, физическая химия, аналитическая химия и химия высоко молекулярных соединений. Все эти разделы осуществляют решение двух крупных задач:

ü Получение веществ с заданными свойствами;

ü Исследование генезиса (происхождения) веществ.

Решение этих задач предполагает проведение исследований элементного молекулярного состава веществ, структуры молекул вещества, термодинамических и кинетических условий химического процесса, природы реагентов, процессов самоорганизации и эволюции химических соединений.

Химия – очень древняя наука. До нашей эры химия развивалась, в основном, в древнем Египте и арабских странах. Накопленные знания не выходили, однако, за пределы феноменологического уровня. Были описаны свойства веществ и устанавливались некоторые закономерности их взаимодействия, но сущность явлений очень часто подменялась мистической интерпретацией. В Западной Европе развитие химии было, с одной стороны, тесно связано с развитием техники, а с другой стороны химия продолжала быть тесно связана с религиозно-философскими представлениями, т.е. оставалась «алхимией».

Становление химии проходило на основе двух законов: сохранения массы и постоянства состава.

ü Закон сохранения массы: полная масса замкнутой системы остается постоянной, т.е. в результате химической реакции не происходит измеримого увеличения или уменьшения массы (закон Ломоносова-Лавуазье);

ü Закон постоянства состава: всякое химическое соединение, независимо от способа получения, всегда содержит определенные элементы в одинаковом весовом соотношении (французский химик Ж.Пруст, 1800-1880 гг.).

Однако, универсальным законом химии считается периодический закон химических элементов Д.И.Менделеева: свойства химических элементов не являются случайными, а зависят от электронного строения атома; они закономерно изменяются в зависимости от атомного номера в таблице элементов.

 

 


Поделиться с друзьями:

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.015 с.