Механический смысл производной второго порядка — КиберПедия 

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Механический смысл производной второго порядка

2017-12-13 505
Механический смысл производной второго порядка 0.00 из 5.00 0 оценок
Заказать работу

Пусть материальная точка М движется прямолинейно по закону S = f(t). Как уже известно, производная St равна скорости точки в данный момент времени: St’= V.

Пусть в момент времени t скорость точки равна V, а в момент t +Dt – скорость равна V + DV, т. е. за промежуток времени Dt скорость изменилась на величину DV.

Отношение выражает среднее ускорение движения точки за время Dt. Предел этого отношения при Dt ®0 называется ускорением точки М в данный момент t и обозначается буквой а: Итак, вторая производная от пути по времени есть величина ускорения прямолинейного движения точки, т. е. .

Дифференциалы высших порядков

Пусть y=f(x) дифференцируемая функция, а ее аргумент х – независимая переменная. Тогда ее первый дифференциал есть также функция х, можно найти дифференциал этой функции.

Дифференциал от дифференциала функции называется ее вторым дифференциалом (или дифференциалом второго порядка) и обозначается : .

Дифференциал второго порядка от данной функции равен произведению второго порядка этой функции на квадрат дифференциала независимой переменной: .

Приложение дифференциального исчисления

Функция называется возрастающей (убывающей) на интервале ( a; b), если для любых двух точек x1 и x2 из указанного интервала, удовлетворяющих неравенству , выполняется неравенство ().

Необходимое условие возрастания (убывания): Если дифференцируемая функция на интервале ( a, b) возрастает (убывает), то производная этой функции неотрицательна (неположительна) в этом интервале ().

Достаточное условие возрастания (убывания): Если производная дифференцируемой функции положительна (отрицательна) внутри некоторого интервала, то функция возрастает (убывает) на этом интервале.

Функция f(x) в точке х1 имеет максимум, если для любого х из некоторой окрестности точки выполняется неравенство: f(x1)>f(x), при x ¹x1.

Функция f(x) в точке х1 имеет минимум, если для любого х из некоторой окрестности точки выполняется неравенство: f(x1)<f(x), при x ¹x1.

Экстремум функции называют локальным экстремумом, так как понятие экстремума связано лишь с достаточно малой окрестностью точки х1. Так что на одном промежутке функция может иметь несколько экстремумов, причем может случиться, что минимум в одной точке больше максимума в другой. Наличие максимума или минимума в отдельной точке интервала не означает, что в этой точке функция f(x) принимает наибольшее или наименьшее значение на этом интервале.

Необходимое условие экстремума: В точке экстремума дифференцируемой функции ее производная равна нулю.

Достаточное условие экстремума: Если производная дифференцируемой функция в некоторой точке х0 равна нулю и меняет свой знак при переходе через это значение, то число f(х0) является экстремумом функции, причем если изменение знака происходит с плюса на минус, то максимум, если с минуса на плюс, то минимум.

Точки, в которых производная непрерывной функции равна нулю или не существует называются критическими.

Исследовать функцию на экстремум означает найти все ее экстремумы. Правило исследования функции на экстремум:

1). Найти критические точки функции у = f(x) и выбрать из них лишь те, которые являются внутренними точками области определения функции;

2). Исследовать знак производной f'(x) слева и справа от каждой из выбранных критических точек;

3). На основании достаточного условия экстремума выписать точки экстремума (если они есть) и вычислить значения функции в них.

Для того чтобы найти наибольшее и наименьшее значение функции на отрезке необходимо выполнить несколько этапов:

1). Найти критические токи функции, решив уравнение f’(x)=0.

2). Если критические точки попали на отрезок, то необходимо найти значения в критических точках и на границах интервала. Если критические точки не попали на отрезок (или их не существует), то находят значения функции только на границах отрезка.

3). Из полученных значений функции выбирают наибольшее и наименьшее и записывают ответ, например, в виде: ; .

Решение задач

Пример 2.1. Найти дифференциал функции: .

Решение. На основании свойства 2 дифференциала функции и определения дифференциала имеем:

.

Пример 2.2. Найти дифференциал функции:

Решение. Функцию можно записать в виде: , . Тогда имеем:

Пример 2.3. Найти вторую производную функции:

Решение. Преобразуем функцию .

Найдем первую производную:

;

найдем вторую производную:

.

Пример 2.4. Найти дифференциал второго порядка от функции .

Решение. Найдем дифференциал второго порядка на основании выражения для вычисления :

. Найдем сначала первую производную:

; найдем вторую производную: .

Тогда .

Пример 2.5. Найти угловой коэффициент касательной к кривой , проведенной в точке с абсциссой х=2.

Решение. На основании геометрического смысла производной имеем, что угловой коэффициент равен производной функции в точке, абсцисса которой равна х. Найдем .

Вычислим – угловой коэффициент касательной к графику функции.

Пример 2.6. Популяция бактерий в момент времени t (t измеряется в часах) насчитывает особей. Найти скорость роста бактерий. Найти скорость роста бактерий в момент времени t = 5 часов.

Решение. Скорость роста популяции бактерий – это первая производная по времени t: .

Если t = 5 часов, то . Следовательно, скорость роста бактерий составит 1000 особей в час.

Пример 2.7. Реакция организма на введенное лекарство может выражаться в повышении кровяного давления, уменьшении температуры тела, изменении пульса или других физиологических показателей. Степень реакции зависит от назначенной дозы лекарства. Если х обозначает дозу назначенного лекарства, а степень реакции у описывается функцией . При каком значении х реакция максимальна?

Решение. Найдем производную .

Найдем критические точки: . ⇒ Следовательно, имеем две критические точки: . Значение не удовлетворяет условию задачи.

Найдем вторую производную . Вычислим значение второй производной при . . Значит, – уровень дозы, который дает максимальную реакцию.

Примеры для самостоятельного решения

Найти дифференциал функции:


1. .

2. .

3. .

4.


Найти вторые производные следующих функций:


5. .

6. .

7. .

8. .


Найти производные второго порядка и записать дифференциалы второго порядка для следующих функции:

9. .

10. .

11. Исследовать функцию на экстремум .

12. Найти наибольшее и наименьшее значения функции на отрезке .

13. Найти интервалы возрастания и убывания функции, точки максимума и минимума и точки пересечения с осями:

14. Закон движения точки имеет вид . Определить закон скорость и ускорение этой точки.

15. Уравнение движения точки имеет вид (м). Найти 1) положение точки в моменты времени с и с; 2) среднюю скорость за время, прошедшее между этими моментами времени; 3) мгновенные скорости в указанные моменты времени; 4) среднее ускорение за указанный промежуток времени; 5) мгновенные ускорения в указанные моменты времени.

Задание на дом.

Практика:

Найти дифференциал функции:


1. ;

2. ;


Найти производные второго порядка функции:


3. .

4.

5.

Найти дифференциалы второго порядка


6. .

 


7. Точка движется прямолинейно по закону . Вычислить скорость и ускорение в моменты времени и .

Найти интервалы возрастания и убывания функций:

8. .

9. .

10. При вливании глюкозы ее содержание в крови человека, выраженное в соответствующих единицах, спустя t часов составит . Найдите скорость изменения содержания глюкозы в крови при а) t =1 ч; б) t =2 ч.

Теория.

1. Лекция по теме «Производные и дифференциалы функции нескольких аргументов. Приложение дифференциала функции нескольких аргументов».

2. Занятие 3 данного методического пособия.

3. Павлушков И.В. и другие стр. 101-113, 118-121.

 


 

Занятие 3. Производные и дифференциалы функции нескольких аргументов

Актуальность темы: данный раздел математики имеет широкое применение при решении ряда прикладных задач, так как многим явлениям физического, биологического, химического явления присуща зависимость не от одной, а от нескольких переменных (факторов).

Цель занятия: научиться находить частные производные и дифференциалы функций нескольких переменных.

Целевые задачи:

знать: понятие функции двух переменных; понятие частных производных функции двух переменных; понятие полного и частных дифференциалов функции нескольких переменных;

уметь: находить производные и дифференциалы функций нескольких переменных.

Краткие сведения из теоретического курса

Основные понятия

Переменная z называется функцией двух аргументов x и y, если некоторым парам значений по какому-либо правилу или закону ставится в соответствие определенное значение z. Функция двух аргументов обозначается .

Функция задается в виде поверхности в прямоугольной системе координат в пространстве. Графиком функции двух переменных называется множество точек трехмерного пространства (x, y, z), аппликата z которых связана с абсциссой х и ординатой у функциональным соотношением .

Рассмотрим функцию z=f(x,y). Дадим аргументу х приращение Dх, а аргументу у – приращение . Тогда функция z получит наращенное значение .

Величина называется полным приращением функции в точке . Частным приращением по переменной х называется величина: . Аналогично определяется частное приращение по переменной у: .

Частные производные и дифференциалы функции
нескольких переменных

Частной производной от функции по независимой переменной х называют конечный предел , вычисленный при постоянном у. Обозначается: или .

Частной производной от функции по независимой переменной у называют конечный предел , вычисленный при постоянном х. Обозначается: или .

Пусть функция z=f(x,y) имеет две непрерывные частные производные .

Произведение называется частным дифференциалом функции z=f(x,y) по х и обозначаются .

Произведение называется частным дифференциалом функции z=f(x,y)по х и обозначаются .

Полный дифференциал функции

Дифференциалом функции называется сумма произведений частных производных этой функции на приращение соответствующих независимых переменных, т. е. . Так как и тогда можно записать: или .


Поделиться с друзьями:

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.01 с.