Основные элементарные функции их свойства и графики. — КиберПедия 

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Основные элементарные функции их свойства и графики.

2017-12-12 605
Основные элементарные функции их свойства и графики. 0.00 из 5.00 0 оценок
Заказать работу

Основные элементарные функции их свойства и графики.

 

 

 

 

Определение производной функции в точке. Таблица производных.

 

Определение производной функции в точке. 

Пусть функция f(x) определена на промежутке (a; b), и - точки этого промежутка. Производной функции f(x) в точке называется предел отношения приращения функции к приращению аргумента при . Обозначается .


Когда последний предел принимает конкретное конечное значение, то говорят о существовании конечной производной в точке. Если предел бесконечен, то говорят, что производная бесконечна в данной точке. Если же предел не существует, то и производная функции в этой точке не существует. 


Функцию f(x) называют дифференцируемой в точке , когда она имеет в ней конечную производную.


Если функция f(x) дифференцируема в каждой точке некоторого промежутка (a; b), то функцию называют дифференцируемой на этом промежутке. Таким образом, любой точке x из промежутка (a; b) можно поставить в соответствие значение производной функции в этой точке , то есть, мы имеем возможность определить новую функцию , которую называют производной функции f(x) на интервале (a; b). 


Операция нахождения производной называется дифференцированием. 


Проведем разграничения в природе понятий производной функции в точке и на промежутке: производная функции в точке – это есть число, а производная функции на промежутке – это есть функция.

 

ТАБЛИЦА ПРОИЗВОДНЫХ:

 

 

3) Производная сложной функции.

Сложная функция – это функция, аргументом которой также является функция.

С нашей точки зрения, это определение наиболее понятно. Условно можно обозначать как f(g(x)). То есть, g(x) как бы аргумент функции f(g(x)). 

К примеру, пусть f – функция арктангенса, а g(x) = lnx есть функция натурального логарифма, тогда сложная функция f(g(x)) представляет собой arctg(lnx). Еще пример: f – функция возведения в четвертую степень, а - целая рациональная функция (смотрите классификацию элементарных функций), тогда .

В свою очередь, g(x) также может быть сложной функцией. Например, . Условно такое выражение можно обозначить как . Здесь f – функция синуса, - функция извлечения квадратного корня, - дробная рациональная функция. Логично предположить, что степень вложенности функций может быть любым конечным натуральным числом .


Часто можно слышать, что сложную функцию называют композицией функций. 


 Формула нахождения производной сложной функции. 



 

Промежутки возрастания и убывания функции. Максимум и минимум функции.

 

Определение возрастающей функции.

 

Функция y = f(x) возрастает на интервале X, если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

 

Первообразная. Неопределённый интеграл. Таблица интегралов.

 

Первообразная. Функция F(х) называется первообразной для функции f (х) на промежутке X, если для любого х из Х выполняется равенство F'(x)=f(x)

 

ТАБЛИЦА ПЕРВООБРАЗНЫХ

 

Множество первообразных функции f (x) называется неопределённым интегралом от этой функции и обозначается символом .
 Как следует из изложенного выше, если F (x) - некоторая первообразная функции f (x), то , где C - произвольная постоянная. Функцию f (x) принято называть подынтегральной функцией, произведение f (x) dx - подынтегральным выражением.

 

 

Свойства неопределённого интеграла, непосредственно следующие из определения:

1) .

2) (или ).

 

 

ТАБЛИЦА ИНТЕГРАЛОВ

 

Формула Бернулли.

Вероятность того, что в n независимых испытаниях, в каждом из кото- рых вероятность появления события равна p, событие наступит ровно k раз (безразлично в какой последовательности), равна

Полигон частот.

Полигоном частот называют ломаную, отрезки которой соединяют

точки (x1,n1), (x2,n2),...,(xk,nk), где хi - варианты выборки и ni - соответствую- щие им частоты.

Полигоном относительных частот называют ломаную, отрезки ко- торой соединяют точки (x1,w1), (x2,w2),...,(xk,wk), где хi - варианты выборки и wi - соответствующие им относительные частоты. При непрерывном распре- делении признака весь интервал, в котором заключены все наблюдаемые зна- чения признака, разбивают на ряд частичных интервалов длины h и находят ni - сумму частот вариант, попавших в i-й интервал.

 

Гистограмма частот.

Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длины h, а высоты равны отношению ni/n (плотность частоты). Площадь частичного i-го прямоугольника равна h×ni/n= ni-сумме частот вариант, попавших в i-ый интервал. Площадь гистограммы частот равна сумме всех частот, т.е. объёму выборки n.

 

Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длины h, а высоты равны отношению wi/h (плотность относительной частоты). Площадь частичного i-го прямоугольника равна (h w)i/h= wi - относительной частоте вариант, попавших в i-ый интервал. Площадь гистограммы относительных частот равна сумме всех относительных частот, т.е. единице.

 

 

Основные элементарные функции их свойства и графики.

 

 

 

 

Определение производной функции в точке. Таблица производных.

 

Определение производной функции в точке. 

Пусть функция f(x) определена на промежутке (a; b), и - точки этого промежутка. Производной функции f(x) в точке называется предел отношения приращения функции к приращению аргумента при . Обозначается .


Когда последний предел принимает конкретное конечное значение, то говорят о существовании конечной производной в точке. Если предел бесконечен, то говорят, что производная бесконечна в данной точке. Если же предел не существует, то и производная функции в этой точке не существует. 


Функцию f(x) называют дифференцируемой в точке , когда она имеет в ней конечную производную.


Если функция f(x) дифференцируема в каждой точке некоторого промежутка (a; b), то функцию называют дифференцируемой на этом промежутке. Таким образом, любой точке x из промежутка (a; b) можно поставить в соответствие значение производной функции в этой точке , то есть, мы имеем возможность определить новую функцию , которую называют производной функции f(x) на интервале (a; b). 


Операция нахождения производной называется дифференцированием. 


Проведем разграничения в природе понятий производной функции в точке и на промежутке: производная функции в точке – это есть число, а производная функции на промежутке – это есть функция.

 

ТАБЛИЦА ПРОИЗВОДНЫХ:

 

 

3) Производная сложной функции.

Сложная функция – это функция, аргументом которой также является функция.

С нашей точки зрения, это определение наиболее понятно. Условно можно обозначать как f(g(x)). То есть, g(x) как бы аргумент функции f(g(x)). 

К примеру, пусть f – функция арктангенса, а g(x) = lnx есть функция натурального логарифма, тогда сложная функция f(g(x)) представляет собой arctg(lnx). Еще пример: f – функция возведения в четвертую степень, а - целая рациональная функция (смотрите классификацию элементарных функций), тогда .

В свою очередь, g(x) также может быть сложной функцией. Например, . Условно такое выражение можно обозначить как . Здесь f – функция синуса, - функция извлечения квадратного корня, - дробная рациональная функция. Логично предположить, что степень вложенности функций может быть любым конечным натуральным числом .


Часто можно слышать, что сложную функцию называют композицией функций. 


 Формула нахождения производной сложной функции. 



 


Поделиться с друзьями:

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.022 с.