Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...
Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...
Топ:
Эволюция кровеносной системы позвоночных животных: Биологическая эволюция – необратимый процесс исторического развития живой природы...
Марксистская теория происхождения государства: По мнению Маркса и Энгельса, в основе развития общества, происходящих в нем изменений лежит...
Оценка эффективности инструментов коммуникационной политики: Внешние коммуникации - обмен информацией между организацией и её внешней средой...
Интересное:
Мероприятия для защиты от морозного пучения грунтов: Инженерная защита от морозного (криогенного) пучения грунтов необходима для легких малоэтажных зданий и других сооружений...
Инженерная защита территорий, зданий и сооружений от опасных геологических процессов: Изучение оползневых явлений, оценка устойчивости склонов и проектирование противооползневых сооружений — актуальнейшие задачи, стоящие перед отечественными...
Национальное богатство страны и его составляющие: для оценки элементов национального богатства используются...
Дисциплины:
2017-11-28 | 381 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Корреляционный и регрессионный анализ — это два близких метода, которые обычно используются совместно для исследования взаимосвязи между двумя или более непрерывными переменными.
Результаты корреляционного анализа позволяют делать статистические выводы о степени зависимости между переменными.
Величина линейной зависимости между двумя переменными измеряется посредством простого коэффициента корреляции, величина зависимости от нескольких — посредством множественного коэффициента корреляции.
В корреляционном анализе используется также понятие частного коэффициента корреляции, который измеряет линейную взаимосвязь между двумя переменными без учета влияния других переменных.
Если корреляционный анализ позволил установить наличие линейной зависимости наблюдаемой переменной от одной или более независимых, то форма зависимости может быть уточнена методами регрессионного анализа.
Для этого строится так называемое уравнение регрессии, которое связывает зависимую переменную с независимыми и содержит неизвестные параметры. Если уравнение линейно относительно параметров (но необязательно линейно относительно независимых переменных), то говорят о линейной регрессии, в противном случае регрессия нелинейна.
Поэтому результаты корреляционного анализа целесообразно уточнить, проведя регрессионный анализ.
Регрессионный анализ позволяет решать две задачи:
1. устанавливать наличие возможной причинной связи между переменными;
2. предсказывать значения переменной по значениям независимых переменных (эта возможность особенно важна в тех случаях, когда прямые измерения зависимой переменной затруднены).
|
Если предполагается линейная зависимость между х и у, то она может быть описана уравнением, которое называется простой линейной регрессией у по х, вида:
Здесь i=1......... n; n — объем испытаний;
величины b0 и b1 являются неизвестными параметрами;
ei — случайные ошибки испытаний.
Цель регрессионного анализа — найти наилучшие в статистическом смысле оценки параметров b0 и b1 (величину b1 обычно называют коэффициентом регрессии).
Зная значения b0 и b1, можно найти оценку переменной у при x=xi:
Каким же образом полученное уравнение (или, как говорят, регрессионная модель) может быть использовано для прогнозирования значений зависимой переменной у?
Чтобы ответить на этот вопрос, воспользуемся приводившимся уже примером, связанным с оценкой надежности компьютера. Предположим, исследователю удалось посредством дисперсионного анализа установить наличие зависимости среднего числа отказов от интенсивности обращений к жесткому диску. Предположим также, что корреляционный анализ позволил определить линейный характер этой зависимости. В этом случае, имея уравнение регрессии, связывающее указанные величины, можно для каждого конкретного значения интенсивности обращений к диску «спрогнозировать» соответствующее среднее число отказов.
Разница между наблюдаемым и оцененным значением у при x=xi называется отклонением (или остатком) di=yi - y'i. Величины отклонений могут быть использованы для проверки адекватности полученной модели. Для этого строится график d=f (у) или d=f (х) (рис. 2.22) и по его виду делается предварительное заключение о степени адекватности модели.
В случае нескольких независимых переменных имеет место множественная линейная регрессия:
В этом случае для отыскания оценок bi также используется метод наименьших квадратов (МНК).
В случае нелинейной регрессии основой для построения регрессионной модели опять-таки является МНК. Однако в этом случае для отыскания оценок bj строится система нелинейных уравнений (относительно bj), а для ее решения используются различные итерационные методы.
|
Эффективное использование процедур статистического анализа экспериментальных данных возможно только в том случае, если в распоряжении исследователя имеются соответствующие инструментальные средства, к описанию которых мы теперь можем перейти. Но прежде подведем краткий итог изложенному в этом уроке.
Таким образом: в тех случаях, когда поведение исследуемой системы зависит от воздействия большого числа случайных факторов, либо интерес представляет развитие ситуации во времени, удобнее всего использовать имитационные модели. Основная особенность таких моделей — обеспечение возможности проведения статистического эксперимента.
· В зависимости от того, какие аспекты поведения исследуемой системы или операции вас интересуют, ее модель может быть описана либо как последовательность событий, либо как совокупность взаимодействующих процессов, либо как последовательность операций обслуживания транзактов.
· Создание имитационной модели сложной системы, функционирование которой предполагает наличие параллельных процессов, является весьма сложным делом, требующим от разработчика не только хорошего знания рассматриваемой предметной области, но достаточно прочных навыков в программировании.
· Результаты имитационного эксперимента могут быть использованы для принятия решения лишь при условии их корректной статистической обработки, что предъявляет к уровню подготовки исследователя целый ряд дополнительных требований.
· Существенное повышение технологичности подготовки, проведения и анализа результатов имитационного моделирования возможно в том случае, если в распоряжении исследователя имеются соответствующие инструментальные средства.
|
|
История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...
Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...
Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...
История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!