Девиация магнитного компаса. Порядок учета — КиберПедия 

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Девиация магнитного компаса. Порядок учета

2017-11-16 734
Девиация магнитного компаса. Порядок учета 0.00 из 5.00 0 оценок
Заказать работу

Компасным меридианом называется линия, вдоль которой устанавливается магнитная стрелка компаса, находящегося на самолете. Компасный и магнитный меридианы не совпадают.

Девиацией компаса (Δк) называется угол, заключенный между северными направлениями магнитного и компасного меридианов. Девиация компаса отсчитывается по часовой стрелке (вправо) со знаком «+», против часовой стрелки (влево) – со знаком «–».

Девиация компаса вызывается действием на стрелку компаса магнитного поля самолета, создаваемого стальными и железными деталями самолета, и электромагнитного поля, возникающего при работе электро- и радиооборудования. Девиация компаса является переменной величиной для каждого курса самолета и компаса.

На картушку магнитного компаса, установленного на самолете, действуют следующие поля:

– магнитное поле Земли (оно стремится направить стрелку магнитного компаса по магнитному меридиану);

– постоянное магнитное поле самолета;

– переменное магнитное поле самолета;

– электромагнитное поле, создаваемое работающим электро- и радиооборудованием самолета.

Постоянное магнитное поле самолета создается твердым самолетным железом.

Твердое железо – такие ферромагнитные массы самолета, которые длительно сохраняют магнитные свойства, т. е. обладают большой коэрцитивной силой. Твердое железо рассматривают в магнитном отношении как постоянный магнит. Постоянное магнитное поле самолета сохраняет величину и направление относительно продольной оси самолета на любом курсе и вызывает полукруговую девиацию.

Переменное магнитное поле самолета создается мягким самолетным железом.

Мягкое железо – такие ферромагнитные массы самолета, которые имеют неустойчивую намагниченность, т. е. обладают малой коэрцитивной силой. Они легко перемагничиваются при перемене курса самолета. Переменное магнитное поле самолета меняет свою величину и направление относительно продольной оси в зависимости от курса самолета и вызывает четвертную девиацию.

Электромагнитное поле, создаваемое работающим электро- и радиооборудованием самолета, по характеру действия аналогично магнитному полю твердого железа. Поэтому девиация, вызываемая электромагнитным полем, обычно рассматривается совместно с девиацией, вызываемой твердым железом.

Рассмотрим полукруговую и четвертную девиацию и их характеристики.

Девиация называется полукруговой потому, что она два раза (через полукруг) приходит к нулю и два раза меняет свой знак при повороте самолета на 360°.

Для удобства рассмотрения суммарное действие постоянного магнитного поля самолета можно заменить эквивалентным действием бруска твердого железа. Предположим, что брусок твердого железа расположен по продольной оси самолета. Обозначим буквой горизонтальную составляющую магнитного поля Земли, а буквой вектор напряженности магнитного поля бруска твердого железа. Так как вектор направлен по продольной оси самолета, то на МК = 0° его действие будет совпадать с действием вектора , и не вызывает отклонения картушки компаса от плоскости магнитного меридиана (рис. 3.3). Поэтому на МК = 0° девиация равна нулю. Из рис. 3.3 видно, что при изменении курса самолета направление результирующего вектора изменяется. На МК = 90° вектор направлен под прямым углом к вектору и создает максимальную положительную девиацию. При дальнейшем повороте самолета девиация начнет уменьшаться и на курсе 180° снова станет равной нулю. Затем после курса 180° вектор начнет вызывать отрицательную девиацию, которая достигнет максимальной величины на МК = 270°.

Рис. 3.3. Полукруговая девиация

Полукруговая девиация имеет следующие особенности:

– при повороте самолета на 360° полукруговая девиация дважды достигает максимального значения и дважды становится равной нулю;

– на противоположных курсах полукруговая девиация равна по величине, но противоположна по знаку;

– полукруговая девиация составляет большую часть девиации компаса, и ее можно полностью компенсировать с помощью постоянных магнитов девиационного прибора.

В общем случае брусок твердого железа может и не совпадать по направлению с продольной осью самолета, что не меняет характера полукруговой девиации, но смещает ее график по отношению курсов самолета на угол, равный углу между продольной осью самолета и направлением оси бруска. Полукруговая девиация при любом положении бруска твердого железа будет дважды равняться нулю при повороте самолета на 360°.

Девиация называется четвертной потому, что она при повороте самолета на 360° четыре раза (через четверть круга) становится равной нулю и четыре раза меняет свой знак.

Мягкое железо приобретает свойства магнита при воздействии на него магнитного поля Земли и, как уже отмечалось, имеет неустойчивую намагниченность. Брусок мягкого железа, расположенный определенным образом по отношению к магнитному полю Земли, намагничивается не по направлению магнитных силовых линий, а по длине бруска.

Следовательно, максимальное намагничивание бруска мягкого железа происходит в том случае, когда брусок расположен по направлению силовых линий поля. Когда брусок расположен перпендикулярно к магнитным силовым линиям, то намагниченность его равна нулю. Поэтому при перемене курса самолета мягкое железо перемагничивается и создает переменное поле самолета, которое меняет свою величину и направление относительно продольной оси самолета.

Для удобства объяснения влияния мягкого железа на магнитный компас расположим вблизи компаса брусок мягкого железа вдоль продольной оси самолета. Обозначим вектор напряженности поля бруска мягкого железа (рис. 3.4).

Рис. 3.4. Четвертная девиация:

а – действие магнитного поля мягкого железа; б – график четвертной девиации

На МК = 0° векторы и совпадут по направлению. Хотя намагниченность бруска мягкого железа в этом случае будет максимальной, она не вызовет отклонения картушки компаса от плоскости магнитного меридиана и девиация останется равной нулю.

При повороте самолета брусок мягкого железа отклоняется от направления силовых линий магнитного поля Земли и намагниченность бруска уменьшается. На МК = 45° действие магнитного поля мягкого железа вызовет максимальное значение положительной девиации. На МК = 90° мягкое железо потеряет свойства магнита, т. к. брусок расположится перпендикулярно к силовым линиям магнитного поля Земли, и девиация снова станет равной нулю. При дальнейшем повороте самолета брусок мягкого железа перемагнитится и вызовет отрицательную девиацию, которая на МК = 135° достигнет максимального значения. Из рисунка видно, что на МК, равных 180 и 270°, девиация вновь достигнет нуля, а на МК, равных 225 и 315°, будет максимальной.

Четвертная девиация имеет следующие свойства:

– при повороте самолета на 360° четвертная девиация четыре раза достигает максимума и четыре раза становится равной нулю;

– на противоположных курсах четвертная девиация равна по величине и по знаку;

– четвертная девиация составляет меньшую часть девиации компаса.

Характер изменения этой девиации не позволяет устранять ее с помощью постоянных магнитов. Она списывается и заносится в график. Как правило, переменное магнитное поле самолета нельзя, за исключением редких случаев, привести к действию одного бруска мягкого железа. Расположение деталей из мягкого железа на самолете обычно таково, что своим действием они вызывают, кроме четвертной, постоянную девиацию.

Постоянная девиация вызывается мягким самолетным железом, расположенным вокруг компаса и намагниченным магнитным полем Земли. Железные детали, расположенные вокруг компаса, могут создать такое суммарное магнитное поле, которое не будет изменять своей величины и положения в пространстве при изменении курса самолета, т. е. массы мягкого железа могут образовать магнитное поле с устойчивой полярностью.

 


Поделиться с друзьями:

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.014 с.