К теме 1.1. «Основы генетики» — КиберПедия 

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

К теме 1.1. «Основы генетики»

2017-11-16 259
К теме 1.1. «Основы генетики» 0.00 из 5.00 0 оценок
Заказать работу

 

Разработчик учебно-методических материалов:

Т.И.Дуброва, кандидат педагогических наук,

заведующий кафедрой коррекционной педагогики,

здорового и безопасного образа жизни

 

Сопроводительная записка

Учебно-методические материалы к теме «Основы генетики» являются структурным компонентом дополнительной профессиональной программы – программы профессиональной переподготовки «Логопедия» и предназначены для слушателей курсов профессиональной переподготовки. Объем изучения темы в форме дистанционного обучения 6 часов.

Целью изучения темы является ознакомление слушателей с основами медицинских знаний в области генетики. В результате изучения темы слушатели должны приобрести знания в сфере повышения общего уровня медицинских знаний в вопросах оказания комплексной логопедической помощи, необходимые для развития следующих компетенций:

- способность к абстрактному мышлению, анализу, синтезу (ОК-1)

- способность демонстрировать знания фундаментальных и прикладных дисциплин программы, осознавать основные проблемы своей предметной области (ОПК-2);

- готовность к самостоятельному освоению и применению новых методов и технологий исследования (ОПК-3);

- способность к проектированию индивидуальных маршрутов развития, образования, социальной адаптации и интеграции лиц с ОВЗ на основе результатов психолого-педагогического изучения лиц с ОВЗ (ПК-2);

- готовность к психолого-педагогическому изучению лиц с ОВЗ с целью выявления особенностей их развития и осуществления комплексного сопровождения (ПК-5);

- способность к проектированию и внедрению психолого-педагогических технологий выявления нарушений в развитии (ПК-6).

Контроль качества изучения слушателями темы осуществляется в форме выполнения контрольного задания – теста.

Учебно-тематический план

  №   Наименование тем Количество часов
всего Лекции ДОТ Форма контроля
1.1. Основы генетики     тест
  Итого      

Учебные материалы (содержание)

1.Из истории генетики. Зачатки генетики можно проследить ещё в доисторические времена. Судя по разнообразным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения к другому. Отбирая определённые организмы из природных популяций, и скрещивая их между собой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами. На вавилонских глиняных табличках указывались возможные признаки при скрещивании лошадей. Однако основы современных представлений о механизмах наследственности были заложены только в середине XIX века. Хотя успехи микроскопии и позволили установить, что наследственные признаки передаются из поколения в поколение через сперматозоиды и яйцеклетки, оставалось неясным, каким образом мельчайшие частицы протоплазмы могут нести в себе «задатки» того огромного множества признаков, из которых слагается каждый отдельный организм.

Создателем современной генетики считается монах Грегор Мендель, занимавшийся изучением гибридизации растений в Августинском монастыре в Брюнне. В 1865 году он обнародовал на заседании местного общества естествоиспытателей результаты исследований о передаче по наследству признаков при скрещивании гороха, а в 1866 опубликовал свою работу под названием "Опыты над растительными гибридами".

В начале XX века работы Менделя вновь привлекли внимание в связи с исследованиями Карла Корренса, Эриха фон Чермака и Гуго Де Фриза по гибридизации растений, в которых были подтверждены основные выводы о независимом наследовании признаков и о численных соотношениях при «расщеплении» признаков в потомстве.

Вскоре английский натуралист Уильям Бэтсон ввёл в употребление название новой научной дисциплины: генетика (в 1905 г. в частном письме и в 1906 г. публично). В 1909 году датским ботаником Вильгельмом Йоханнсеном введён в употребление термин «ген».

Основные понятия генетики.

- Кодоминирование - взаимодействие аллельных генов, при котором каждый из аллелей проявляются своё действие.

- Эпистаз - взаимодействие между генами, при котором происходит подавление генов одной аллели генами другой.

- Фенотип - совокупность всех признаков организма.

- Доминантный ген - преобладающий, Аа. АА.

- Кроссинговер - обмен участниками гомологичных хромосом.

- Генотип - совокупность взаимодействующих генов организма.

- Комплементарность - явление, при котором ген одной аллельной пары способствует проявлению действия генов другой аллельной пары.

- Рецессивный ген - подавляемый ген, аа.

- Аллельные гены - гены, расположенные в гомологичных хромосомах.

- Гетерозиготы - организма, образующие два сорта Аа, гамет, наблюдается расщепление, имеют разные аллельные гена.

- Полимерия - наблюдается в тех случаях, когда один и тот же признак определяется несколькими аллелями.

- Гомозиготы - организмы, образующие один сорт АА, аа гамет, в потомстве не наблюдается расщепления, имеют одинаковые гены.

3.Законы Менделя — это принципы передачи наследственных признаков от родительских организмов к их потомкам, вытекающие из экспериментов Грегора Менделя. Эти принципы послужили основой для классической генетики и впоследствии были объяснены как следствие молекулярных механизмов наследственности. Хотя в русскоязычных учебниках обычно описывают три закона, «первый закон» не был открыт Менделем. Особое значение из открытых Менделем закономерностей имеет «гипотеза чистоты гамет». Следует отметить, что сам Грегор Мендель не формулировал свои выводы в качестве «законов» и не присваивал им никаких номеров. Более того, многие «открытые» им факты были давно и хорошо известны, на что сам Мендель указывает в своей работе.

- Закон единообразия гибридов первого поколения

При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов окажется единообразным и будет нести проявление признака одного из родителей

- Закон расщепления признаков

При скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

- Закон независимого наследования признаков

При скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

4.Многогибридное скрещивание. Моногибридным называется скрещивание, при котором родительские формы отличаются друг от друга по одной паре контрастных, альтернативных признаков.

Признак - любая особенность организма, т. е. любое отдельное его качество или свойство, по которому можно различить две особи. У растений это форма венчика (например, симметричный - асимметричный) или его окраска (пурпурный - белый), скорость созревания растений (скороспелость - позднеспелость), устойчивость или восприимчивость к заболеванию и т.д.

Совокупность всех признаков организма, начиная с внешних и кончая особенностями строения и функционирования клеток, тканей и органов, называется фенотипом. Этот термин может употребляться и по отношению к одному из альтернативных признаков.

Признаки и свойства организма проявляются под контролем наследственных факторов, т. е. генов. Совокупность всех генов организма называют генотипом.

Примерами моногибридного скрещивания, проведенного Г. Менделем, могут служить скрещивания гороха с такими хорошо заметными альтернативными признаками, как пурпурные и белые цветки, желтая и зеленая окраска незрелых плодов (бобов), гладкая и морщинистая поверхность семян, желтая и зеленая их окраска и др.

Схема моногибридного скрещивания: Iгомозиготные особи с доминантным признаком; 2гетерозиготные особи с доминантным или промежуточным признаком; 3гомозиготные особи с рецессивным признаком.


Единообразие гибридов первого поколения (первый закон Менделя). При скрещивании гороха с пурпурными и белыми цветками Мендель обнаружил, что у всех гибридных растений первого поколения (F1) цветки оказались пурпурными. При этом белая окраска цветка не проявлялась.

У гибридов первого поколения из пары родительских альтернативных признаков проявляется только один, а признак другого родителя как бы исчезает. Явление преобладания у гибридов F1 признаков одного из родителей Мендель назвал доминированием, а соответствующий признак — доминантным. Признаки, не проявляющиеся у гибридов F1 он назвал рецессивными.

Чтобы выяснить, как будет осуществляться наследование признаков в третьем, четвертом и последующих поколениях, Мендель путем самоопыления вырастил гибриды этих поколений и проанализировал полученное потомство. Он выяснил, что растения, обладающие рецессивными признаками (например, белые цветки), в следующих поколениях, воспроизводят потомство только с белыми цветками.

Иначе вели себя гибриды второго поколения, обладающие доминантными признаками (например, пурпурными цветками). Среди них при анализе потомства Мендель обнаружил две группы растений, внешне совершенно неразличимых по каждому конкретному признаку.

Первая группа, составляющая 1/3 от общего числа растений с доминантным признаком, далее не расщеплялась, т. е. во всех последующих поколениях у них обнаруживалась только пурпурная окраска цветков. Оставшиеся 2/3 растений второго поколения в F3, снова давали расщепление такое же, как в F2 т. е. на три растения с пурпурными цветками появлялось одно с белыми.

При скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть — рецессивный, называется расщеплением. Следовательно, расщепление — это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Особи, которые не дают в потомстве расщепления и сохраняют свои признаки в «чистом» виде, называют гомозиготными, а те, у которых в потомстве происходит расщепление, —гетерозиготными.

Таким образом, Менделем впервые было установлено, что растения, сходные по внешним признакам, могут обладать различными наследственными свойствами.

Для установления причины расщепления, причем в строго определенных численных отношениях доминантных и рецессивных признаков, следует вспомнить, что связь между поколениями при половом размножении осуществляется через половые клетки (гаметы). Очевидно, гаметы несут материальные наследственные задатки, или факторы, определяющие развитие того или иного признака. Эти факторы позже и были названы генами.

В соматических клетках диплоидного организма эти задатки являются парными: один получен от отцовского организма, а другой — от материнского. Мендель предложил обозначать доминантные наследственные задатки заглавной буквой (например,А), а соответствующие им рецессивные задатки прописной буквой (а). Пару генов, определяющих альтернативные признаки, называют аллеломорфной парой, а само явление парности — алле-лизмом.

Каждый ген имеет два состояния — А и а, поэтому они составляют одну пару, а каждого из членов пары называют аллелем. Таким образом, гены, расположенные в одних и тех же локусах (участках) гомологических хромосом и определяющие альтернативное развитие одного и того же признака, называются аллельными. Например, пурпурная и белая окраска цветка гороха является доминантным и рецессивным признаками соответственно двум аллелям (А и а) одного гена. Благодаря наличию двух аллелей возможны два состояния организма: гомо- и гетерозиготные. Если организм содержит одинаковые аллели конкретного гена (АА или аа), то он называется гомозиготным по данному гену (или признаку), а если разные (Аа) — то гетерозиготным. Следовательно, аллель — это форма существования гена.

5.Множественный аллелизм — это существование в популяции более двух аллелей данного гена. В популяции оказываются не два аллельных гена, а несколько. Множественный аллелизм для генов, контролирующих системы несовместимости, выступает как фактор отбора, препятствующий образованию зигот и организмов определенных зигот.

Примером множественного аллелизма является серия множественных аллелей s1, s2, s3, обеспечивающих самостерильность многих растений.

Двенадцать различных состояний одного локуса у дрозофилы, обусловливающих разнообразие окраски глаз (w — белые, we — эозиновые, wa — абрикосовые, wch — вишневые, wm — пятнистые и т. д.);

серия множественных аллелей окраски шерсти у кроликов («сплошная», гималайская, альбинос и т.д.);

аллели IA, Iв, I°, определяющие группы крови у человека, и т.д.

Серия множественных аллелей — результат мутирования одного гена. Обусловленность признака серий множественных аллелей не меняет соотношения фенотипов в гибридном потомстве. Во всех случаях в генотипе присутствует только одна пара аллелей, их взаимодействие и определяет развитие признака.

6.Неполное доминирование. Доминантный признак не всегда полностью подавляет рецессивный, поэтому возможно появление промежуточных признаков у гибридов. Это явление получило название неполное доминирование.
Так, например, при скрещивании двух чистых линий ночной красавицы с красными и белыми цветками первое поколение гибридов оказывается розовым. Происходит неполное доминирование признака окраски, и красный цвет лишь частично подавляет белый. Во втором поколении расщепление признаков по фенотипу оказывается равным расщеплению по генотипу.

У человека неполное доминирование проявляется при наследовании структуры волос. Ген курчавых волос доминирует над геном прямых волос не в полной мере. И у гетерозигот наблюдается промежуточное проявление признака - волнистые волосы.

Иногда расщепление признаков во втором поколении может отклоняться от ожидаемых (3:1 - при полном доминировании, 1:2:1 - при неполном доминировании) результатов. Это связано с тем, что в некоторых случаях гомозиготы по одному из признаков оказываются нежизнеспособными. В этом случае говорят о летальных генах. Один ген может оказывать влияние на другие признаки, в результате чего снижается работоспособность. Например, серые каракульские овцы, гомозиготные по доминантному признаку серой окраски, погибают после рождения из-за недоразвития желудка. Другим примером доминантного летального гена является брахидактилия у человека (укороченные пальцы). Гомозиготы по данному гену погибают на ранних стадиях развития зародыша, а признак проявляется только у гетерозигот.

Примером рецессивного летального гена является ген серповидно - клеточной анемии у человека. В норме эритроциты человека имеют форму двояковогнутого диска. При серповидно - клеточной анемии они приобретают вид серпа, а физиологический эффект выражается острой анемией и снижением количества кислорода, переносимого кровью. У гетерозигот заболевание не проявляется, эритроциты тем не менее все же имеют измененную форму. Гомозиготы по этому признаку в 95% случаев гибнут в раннем возрасте из - за кислородной недостаточности, а гетерозиготы вполне жизнеспособны.

7.Анализирующее скрещивание. Знание законов наследования, открытых Менделем, имеет большое значение для развития сельского хозяйства и медицины. Ученые, создающие новые породы домашних животных и сорта культурных растений, подбирают родительские пары с учетом доминирования признаков, их расщепления в F2, независимого распределения. Им необходимо знать, гомо- или гетерозиготные организмы отобраны для селекционной работы. Можно ли быть уверенным, что исходные формы гомозиготны, если мы знаем лишь их фенотипы? Например, для посева вы взяли желтые семена гороха, - а какой они имеют генотип? Как узнать его? Для этой цели используют метод анализирующего скрещивания - скрещивание исследуемой особи с рецессивной исходной формой. Так, растение гороха, выросшее из желтых семян с неизвестным генотипом, скрещивают с растением, полученным из зеленых семян с известным генотипом. Так, как все половые клетки гомозиготного рецессива несут рецессивный ген (а), то характер расщепления в потомстве по фенотипу будет соответствовать качеству гамет исследуемого родителя. Если в потомстве анализирующего скрещивания отношение желтых и зеленых горошин будет 1:1, значит, генотип исследуемого родителя гетерозиготный (Аа). Если в потомстве все семена гороха имеют только желтую окраску, то исследуемый родитель гомозиготен (АА).

Из этих примеров видно, что особи, гомозиготные по доминантному гену, расщепления в F1 не дают, а гетерозиготные особи при скрещивании с гомозиготной особью дают расщеплении уже в F1.

Анализирующее скрещивание — скрещивание гибридной особи с особью, гомозиготной по рецессивным аллелям, то есть "анализатором". Смысл анализирующего скрещивания заключается в том, что потомки от анализирующего скрещивания обязательно несут один рецессивный аллель от "анализатора", на фоне которого должны проявиться аллели, полученные от анализируемого организма. Для анализирующего скрещивания (исключая случаи взаимодействия генов) характерно совпадение расщепления по фенотипу с расщеплением по генотипу среди потомков. Таким образом, анализирующее скрещивание позволяет определить генотип и соотношение гамет разного типа, образуемых анализируемой особью.

8.Взаимодействие неаллельных генов. Неаллельные гены — это гены, расположенные в различных участках хромосом и кодирующие неодинаковые белки. Неаллельные гены также могут взаимодействовать между со­бой.

При этом либо один ген обусловливает развитие нескольких признаков, либо, наоборот, один признак проявляется под действием совокупности нескольких генов.

Выделяют три формы и взаимодействия неаллельных генов:

· комплементарность;

· эпистаз;

· полимерия.

Комплементарность. Комплементарное (дополнительное) действие генов — это вид взаимодействия неаллельных генов, доминантные аллели кото­рых при совместном сочетании в генотипе обусловливают новое фенотипическое проявление признаков. При этом расщепление гибридов F2 по фенотипу может происходить в соотношениях 9:6:1, 9:3:4, 9:7, иногда 9:3:3:1.

Примером комплементарности является наследование формы плода тыквы. Наличие в генотипе доминантных генов А или В обу­словливает сферическую форму плодов, а рецессивных — удли­нённую. При наличии в генотипе одновременно доминантных ге­нов А и В форма плода будет дисковидной. При скрещивании чистых линий с сортами, имеющими сферическую форму плодов, в первом гибридном поколении F1 все плоды будут иметь дисковидную форму, а в поколении F2 произойдёт расщепление по фе­нотипу: из каждых 16 растений 9 будут иметь дисковидные пло­ды, 6 — сферические и 1 — удлинённые.

Эпистаз. Подавление (ингибирование) действия одной аллельной пары генов геном другой, не аллельной им пары, называется эпистазом. Различают доминантный и рецессивный эпистаз. Если обычное аллельное доминирование можно представить в виде формулы А>а, То явление эпистаза выразится формулой А>В (доминантный эпистаз) или А>В (рецессивный эпистаз), когда доминантный или рецессивный ген одной аллельной пары не допускает проявления генов другой аллельной пары.

Гены, подавляющие действие других, не аллельных им генов, называются Эпистатичными, А подавляемые — Гипостатичными. Эпистатическое взаимодействие генов по своему характеру противоположно комплементарному взаимодействию. При эпистазе фермент, образующийся под контролем одного гена, полностью подавляет или нейтрализует действие фермента, контролируемого другим геном.

Разберем эпистатическое действие генов на примере наследования окраски зерна у овса (рис. 28). У этой культуры были установлены доминантные гены, определяющие черную и серую окраску зерна. Обозначим один из них буквой А, А второй — В. При этом можно представить себе скрещивание, в котором родительские формы имели генотипы A Abb (черносемянный) и АаВВ (серосемянный). В генотипе растения первого поколения (АаВB) Содержатся доминантные гены и черной окраски А, И серой окраски В. Так как ген А Эпистатичен по отношению к гену В, Он не дает ему проявиться, и все гибриды F1 Будут черносемянными. В F1 Произойдет расщепление в отношении 12 черных: 3 серых: 1 белый. Такой результат расщепления легко понять, если представить себе отношение 12:3:1 как видоизменение типичного для дигибридных скрещиваний отношения 9:3:3:1.

В девяти сочетаниях присутствуют оба доминантных гена А И В, Но ген серой окраски В Не может проявляться, и они дают черносемянные растения. В трех сочетаниях (AAbbAabb, Aabb) Ген черной окраски семян А Также обусловит развитие черносемянных растений. Эта группа по фенотипу будет совершенно сходна с первой, и, следовательно, из каждых 16 растений 12 будут черносемянными. В трех сочетаниях (ааВВ, ааВB, ааВB) Доминантный ген В При отсутствии эпистатичного гена А Может проявить доминантное действие по отношению к своему рецессивному аллелю b, И разовьются растения с серыми семенами. Один генотип (Aabb) Представляет собой новую комбинацию, в которой проявится белая окраска зерна, так как отсутствуют оба доминантных гена.

Полимерия — взаимодействие неаллельных множественных генов, однонаправленно влияющих на развитие одного и того же признака; степень проявления признака зависит от количества генов. Полимерные гены обозначаются одинаковыми буквами, а аллели одного локуса имеют одинаковый нижний индекс.

Полимерное взаимодействие неаллельных генов может быть кумулятивным и некумулятивным. При кумулятивной (накопительной) полимерии степень проявления признака зависит от суммарного действия нескольких генов. Чем больше доминантных алле­лей генов, тем сильнее выражен тот или иной признак. Расщепле­ние в F2 по фенотипу при дигибридном скрещивании происходит в соотношении 1:4:6:4:1, а в целом соответствует третьей, пятой (при дигибридном скрещивании), седьмой (при тригибридном скрещивании) и т.п. строчкам в треугольнике Паскаля.

При некумулятивной полимерии признак проявляется при наличии хотя бы одного из доминантных аллелей полимерных генов. Количество доминантных аллелей не влияет на степень выраженности признака. Расщепление в F2 по фенотипу при дигибридном скрещивании — 15:1. Пример полимерии — наследование цвета кожи у людей, который зависит (в первом приближении) от четырёх генов с кумулятивным эффектом.

9.Цитоплазматическая стратегия. В случае партеногенеза или наследованиее при полиплоидии наследуемые признаки передавались через ядерные структуры - хромосомы. Различия состояли только в том, сколько таких хромосом имеется в клетке и получает ли организм их от обоих родителей или только от одного. Но, кроме того, существует еще особый тип передачи наследуемых признаков - не через ядро, а через цитоплазму клетки. В этом случае говорят о нехромосомной, или цитоплазматической наследственности. Наиболее важные случаи нехромосомной наследственности - это наследование пластид и митохондрий.

Растительные клетки содержат особые органеллы, так называемые пластиды, которые имеют собственную кольцевую хромосому и размножаются делением. Если клетка утратила пластиды, то она не способна образовать их заново. Например, обычно эвглена зеленая содержит около 100 хлоропластов. При выращивании эвглены в темноте ее хлоропласты не делятся, в то время как сами одноклеточные продолжают делиться. В результате этого процесса появляются эвглены, не имеющие хлоропластов. У таких эвглен новые хлоропласты не образуются.

Пластиды обычно передаются с яйцеклеткой, но не передаются со спермиями, практически лишенными цитоплазмы. (Однако имеются и исключения, например, спермин герани содержат цитоплазму и пластиды).

Ясно, что наследование пластид подчиняется особым правилам. Этот тип наследования был описан немецкими учеными, (переоткрывшими законы Менделя) еще в 1908 г. при изучении передачи по наследству пестролистности у растений. Рассмотрим этот пример более подробно.

Пестролистные растения состоят из клеток с нормальными пластидами, содержащими хлорофилл и имеющими зеленый цвет, и из клеток с мутантными пластидами, которые не содержат хлорофилла и имеют белый цвет. Листья таких растений "пестрые", т.е. состоят из участков с разной окраской, от чисто зеленой до чисто белой. Нередко одна ветка такого растения несет зеленые листья, а другая - белые. Сами по себе белые листья не могли бы выжить, так как в них не идет процесс фотосинтеза. Но на пестролистном растении они выживают, и на ветках с такими листьями даже могут развиваться цветки, так как они получают питательные вещества от нормальных частей растения.

Пластиды наследуются только по материнской линии (рис. 116). Поскольку пыльцевые клетки не содержат пластид, то, например, при опылении цветка нормального зеленого растения пыльцой цветков, развившихся на ветках с зелеными или с бесцветными листьями, все равно получаются гибриды с нормальными пластидами, т.е. с фенотипом материнского растения.

Теми же особенностями, что и пластиды, обладают митохондрии, имеющие собственную ДНК. Митохондрии сперматозоида при оплодотворении не проникают внутрь клетки или разрушаются в ней. Так что все митохондрии организм получает от матери. Поскольку подавляющее большинство клеток эукариот содержат митохондрии, нехромосомная наследственность - обычное явление. Этот тип наследственности зависит от двух факторов: во-первых, от характера распределения данных митохондрий по дочерним клеткам при делении материнской клетки; во-вторых, от свойств генов, которые локализованы в ДНК пластид или митохондрий. Например, в одну из дочерних клеток может попасть больше мутантных пластид, а в другую меньше или не попасть совсем. В результате потомки этих дочерних клеток будут обладать разными признаками.

В ряде случаев показано, что хромосомная наследственность и нехромосомная могут комбинироваться, давая сложные случаи наследования признаков. Дело в том, что не все белки, необходимые для функционирования митохондрий, закодированы в их ДНК. Большая часть таких белков (до 90%) закодирована в ядерной ДНК клетки. Те признаки митохондрий, которые закодированы в хромосомах ядра клетки, наследуются по законам Менделя, а те признаки, которые закодированы в ДНК самих митохондрий, наследуются (вместе с самими митохондриями) с цитоплазмой яйцеклетки, т.е. по материнской линии.

У бактерий тоже есть генетический материал (плазмиды), который не связан с их единственной хромосомой.

В конце XIX века биологи потратили много труда, чтобы сначала доказать, что носителем наследственности является ядро клетки, а затем конкретизировать это утверждение и доказать хромосомную теорию наследственности. Противники этой точки зрения пытались доказать, что наследственные признаки передаются через цитоплазму клетки. В этой дискуссии было придумано и проведено много экспериментов и теорий. Проводилась пересадка ядер из одних клеток в другие, удаление отдельных хромосом из яйцеклеток и т.д. В результате хромосомная теория восторжествовала, а идея цитоплазматическои наследственности, хотя и не была отвергнута полностью, но влачила жалкое существование. Однако в последние десятилетия ХХ столетия было показано, что такие важные органеллы, как пластиды и митохондрии, имеют собственный генетический материал и передаются в дочерние клетки с цитоплазмой.

Таким образом, были определены границы применимости каждой из, на первый взгляд, альтернативных теорий, после чего они заняли в генетике свои законные места.

10.Виды мутаций. Существует несколько классификаций мутаций по различным критериям. В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

· геномные

· хромосомные

· генные

Геномные — полиплоидизация (образование организмов или клеток, геном которых представлен более чем двумя (3n, 4n, 6n и т. д.) наборами хромосом) и анеуплоидия (гетероплоидия) — изменение числа хромосом, не кратное гаплоидному набору (см. Инге-Вечтомов, 1989).

В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома, кратное n.

При хромосомных мутациях происходят крупные перестройки структуры отдельных хромосом. В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация) (крайний случай — объединение целых хромосом, т. н.

Робертсоновская транслокация, которая является переходным вариантом от хромосомной мутации к геномной).

На генном уровне изменения первичной структуры ДНК генов под действием мутаций менее значительны, чем при хромосомных мутациях, однако генные мутации встречаются более часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точечных мутациях.

Поскольку в состав ДНК входят азотистые основания только двух типов — пурины и пиримидины, все точковые мутации с заменой оснований разделяют на два класса: транзиции (замена пурина на пурин или пиримидина на пиримидин) и трансверсии (замена пурина на пиримидин или наоборот).

Возможны четыре генетических последствия точковых мутаций:

1) сохранение смысла кодона из-за вырожденности генетического кода (синонимическая замена нуклеотида),

2) изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация),

3) образование бессмысленного кодона с преждевременной терминацией (нонсенс-мутация). В генетическом коде имеются три бессмысленных кодона: амбер — UAG, охр — UAA и опал — UGA (в соответствии с этим получают название и мутации, приводящие к образованию бессмысленных триплетов — например амбер-мутация),

4) обратная замена (замена стоп-кодона на смысловой кодон).

11.Мутагенные факторы. Подавляющее число мутаций неблагоприятно или даже смертельно для организма, так как они разрушают отрегулированный на протяжении миллионов лет естественного отбора целостный генотип. Однако мутации возникают постоянно, и способностью мутировать обладают все живые организмы. У каждой мутации есть какая-то причина, хотя в большинстве случаев мы не можем ее определить. Однако число мутаций можно резко увеличить, воздействуя на организм так называемыми мутагенными факторами.

К мутагенным факторам относят некоторые физические воздействия на организм.

Сильнейшим мутагеном является ионизирующее излучение — электромагнитные волны с маленькой длиной волны, но с очень высокой энергией квантов. Такие кванты проникают в ткани организма, повреждая различные молекулы, и, в частности, молекулы ДНК.

Ультрафиолетовое излучение также относится к коротковолновым, но его кванты не проникают глубоко и разрушают только поверхностные слои тканей. Вот почему светлокожим людям нельзя долго находиться летом на солнце — это приводит к увеличению риска возникновения рака и некоторых других заболеваний.

Мутагенным фактором также является повышенная температура. Например, при выращивании мушек-дрозофил при температуре на 10 °С выше обычной число мутаций увеличивается втрое.

Сильнейшим мутагенным действием обладают соединения из многих классов химических веществ. Например, мутации вызывают соли свинца и ртути, формалин, хлороформ, препараты для борьбы с сельскохозяйственными вредителями. Некоторые красители из класса акридинов приводят к делециям и транслокациям в процессе репликации ДНК.

Относительно недавно выяснилось, что причиной мутаций могут быть вирусы. Размножаясь в клетках хозяина, вирусные частицы встраивают «хозяйские» гены в свою ДНК, а при заражении следующей клетки вносят в нее чужеродные гены.

Из сказанного становится ясным, как важно, чтобы в жизни нас окружало как можно меньше факторов, вызывающих мутации. Мутации возникают часто. У человека 2—10% гамет имеют те или иные мутации, хотя, к счастью для нас, в подавляющем большинстве случаев они рецессивны и в дальнейшем не проявляются в фенотипе.

Как же организмы борются за сохранение своего генотипа, защищаясь от действия мутагенных факторов?

Оказывается, если в клетке при репликации ДНК возникает мутация, например замыкается «неправильная» связь между азотистыми основаниями соседних нуклеотидов одной нити ДНК, то специальные ферменты опознают мутантный участок ДНК и вырезают его. Затем другие ферменты достраивают фрагмент ДНК без «ошибок», используя как матрицу немутировавшую цепочку ДНК, и встраивают «правильный» фрагмент на место удаленного мутантного участка.

Итак, мутационная изменчивость имеет следующие основные характеристики:

· мутационные изменения возникают непредсказуемо, и в результате в организме могут появиться новые свойства;

· мутации наследуются и передаются потомству;

· мутации не имеют направленного характера, т. е. нельзя достоверно утверждать, какой именно ген мутирует под действием данного мутагенного фактора;

· мутации могут быть полезными или вредными для организма, доминантными или рецессивными.

12.Соматические и генеративные мутации. Если мутации возникают в любых клетках тела, кроме гамет, их называют соматическими. Если мутировала клетка растения, из которой затем разовьется почка, а впоследствии — побег, то все клетки этого побега будут мутантными.

Так, на кусте черной смородины может возникнуть ветка с белыми или красными ягодами. При вегетативном размножении — в данном случае черенком этого побега — новые свойства будут наблюдаться и у потомства. Таким образом можно вывести новый сорт смородины.

Если соматическая мутация возникла на ранних стадиях индивидуального развития (онтогенеза), то из мутированной клетки может развиться большой участок ткани, все клетки которого будут мутантными. Такие особи называют мозаиками.

Например, человек с глазами разного цвета является мозаикой. Но при половом размножении новый признак, появившийся в результате соматической мутации, потомству не передастся, так как в гаметах этой мутации нет.

Если же мутация произошла в первичных половых клетках или в образовавшихся из <


Поделиться с друзьями:

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.101 с.