Манипулирование данными в реляционной модели. Реляционная алгебра и реляционное исчисление. Операции над отношениями. Первичные и внешние ключи в отношениях. — КиберПедия 

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Манипулирование данными в реляционной модели. Реляционная алгебра и реляционное исчисление. Операции над отношениями. Первичные и внешние ключи в отношениях.

2017-11-16 258
Манипулирование данными в реляционной модели. Реляционная алгебра и реляционное исчисление. Операции над отношениями. Первичные и внешние ключи в отношениях. 0.00 из 5.00 0 оценок
Заказать работу

Поскольку в реляционной модели данных заголовок и тело любого отношения представляют собой множества, к отношениям, вообще говоря, применимы обычные теоретико-множественные операции: объединение, пересечение, вычитание, взятие декартова произведения. Напомним, что для двух множеств S1 {s1} и S2 {s2} результатом операции объединения этих двух множеств S1 UNION S2 является множество S {s} такое, что s S1 или s S2. Результатом операции пересечения S1 INTERSECT S2является множество S {s} такое, что s S1 и s S2. Результатом операции вычитания S1 MINUS S2является множество S {s} такое, что s S1 и s S23). На рис. 2.4 эти операции проиллюстрированы в интуитивной графической форме. Про операцию взятия декартова произведения уже говорилось выше.


Рис. 2.4. Иллюстрация результатов теоретико-множественных операций

Понятно, что эти операции применимы к любым телам отношений, но результатом не будет являться отношение, если у отношений-операндов не совпадают заголовки. Кодд предложил в качестве средства манипулирования реляционными базами данных специальный набор операций, которые гарантированно производят отношения. Этот набор операций принято называть реляционной алгеброй Кодда, хотя он и не является алгеброй в математическом смысле этого термина, поскольку некоторые бинарные операции этого набора применимы не к произвольным парам отношений.

В алгебре Кодда имеется деcять операций: объединение (UNION), пересечение (INTERSECT), вычитание (MINUS), взятие расширенного декартова произведения (TIMES), переименование атрибутов (RENAME), проекция (PROJECT), ограничение (WHERE), соединение ( -JOIN), деление (DIVIDE BY) и присваивание. Если не вдаваться в некоторые тонкости, которые мы рассмотрим в лекции 4, то почти все операции предложенного выше набора обладают очевидной и простой интерпретацией.

При выполнении операции объединения (UNION) двух отношений с одинаковыми заголовками производится отношение, включающее все кортежи, входящие хотя бы в одно из отношений-операндов.

Операция пересечения (INTERSECT) двух отношений с одинаковыми заголовками производит отношение, включающее все кортежи, входящие в оба отношения-операнда.

Отношение, являющееся разностью (MINUS) двух отношений с одинаковыми заголовками, включает все кортежи, входящие в отношение-первый операнд, такие, что ни один из них не входит в отношение, являющееся вторым операндом.

При выполнении декартова произведения (TIMES) двух отношений, пересечение заголовков которых пусто, производится отношение, кортежи которого производятся путем объединения кортежей первого и второго операндов.

Операция переименования (RENAME) производит отношение, тело которого совпадает с телом операнда, но имена атрибутов изменены; эта операция позволяет выполнять первые три операции над отношениями с «почти» совпадающими заголовками (совпадающими во всем, кроме имен атрибутов) и выполнять операцию TIMES над отношениями, пересечение заголовков которых не является пустым.

Результатом ограничения (WHERE) отношения по некоторому условию является отношение, включающее кортежи отношения-операнда, удовлетворяющее этому условию.

При выполнении проекции (PROJECT) отношения на заданное подмножество множества его атрибутов производится отношение, кортежи которого являются соответствующими подмножествами кортежей отношения-операнда.

При -соединении ( -JOIN) двух отношений по некоторому условию () образуется результирующее отношение, кортежи которого производятся путем объединения кортежей первого и второго отношений и удовлетворяют этому условию.

У операции реляционного деления (DIVIDE BY) два операнда – бинарное и унарное отношения. Результирующее отношение состоит из унарных кортежей, включающих значения первого атрибута кортежей первого операнда таких, что множество значений второго атрибута (при фиксированном значении первого атрибута) включает множество значений второго операнда.

Операция присваивания (:=) позволяет сохранить результат вычисления реляционного выражения в существующем отношении БД.

Отношение имеет простую графическую интерпретацию, оно может быть представлено в виде таблицы, столбцы (поля, атрибуты) которой соответствуют вхождениям доменов в отношение, а строки (записи) — наборам из значений, взятых из исходных доменов. Число строк (кортежей) называют кардинальным числом отношения (кардинальностью), или мощностью отношения.

Такая таблица обладает рядом свойств:

1. В таблице нет двух одинаковых строк.

2. Таблица имеет столбцы, соответствующие атрибутам отношения.

3. Каждый атрибут в отношении имеет уникальное имя.

4. Порядок строк в таблице произвольный.

Под атрибутом здесь понимается вхождение домена в отношение. Строки отношения называются кортежами.

Далее следует формализованное определение введённых понятий.

§ Заголовок Hr (или схема) отношения r — конечное множество упорядоченных пар вида <A, T>, где A называется именем атрибута, а T обозначает имя некоторого базового типа или ранее определенного домена, то есть множества допустимых значений. По определению требуется, чтобы все имена атрибутов в заголовке отношения были различны.

§ Кортеж tr, соответствующий заголовку Hr — множество упорядоченных триплетов вида <A, T, v>, по одному такому триплету для каждого атрибута в Hr. Третий элемент – v – триплета <A, T, v> должен являться допустимым значением типа данных или домена T. Замечание: так как имена атрибутов уникальны, то указание домена в кортеже излишне.

§ Тело Br отношения — неупорядоченное множество различных кортежей tr.

§ Значением Vr отношения r называется пара множеств Hr и Br.

Полезно также понятие первичного ключа — это такой набор атрибутов, который однозначно определяет кортеж и минимален среди всех своих подмножеств (то есть нельзя убрать ни один из атрибутов). При добавлении новых записей первичный ключ обязан оставаться первичным ключом (например, неверным будет использование в качестве первичного ключа набора Имя + Отчество + Фамилия сотрудника, даже если на момент создания таблицы полных тёзок среди заносимых в неё людей не было).

Перви́чный ключ (англ. primary key) — в реляционной модели данных один из потенциальных ключей отношения, выбранный в качестве основного ключа (или ключа по умолчанию).

Если в отношении имеется единственный потенциальный ключ, он является и первичным ключом. Если потенциальных ключей несколько, один из них выбирается в качестве первичного, а другие называют «альтернативными».

С точки зрения теории все потенциальные ключи отношения эквивалентны, то есть обладают одинаковыми свойствами уникальности и минимальности. Однако в качестве первичного обычно выбирается тот из потенциальных ключей, который наиболее удобен для тех или иных практических целей, например для создания внешних ключей в других отношениях либо для создания кластерного индекса. Поэтому в качестве первичного ключа, как правило, выбирают тот, который имеет наименьший размер (физического хранения) и/или включает наименьшее количество атрибутов.

Вне́шний ключ (англ. foreign key) — понятие теории реляционных баз данных, относящееся к ограничениям целостности базы данных.

Неформально выражаясь, внешний ключ представляет собой подмножество атрибутов некоторой переменной отношения R2, значения которых должны совпадать со значениями некоторого потенциального ключа некоторой переменной отношения R1.

Формальное определение. Пусть R1 и R2 — две переменные отношения, не обязательно различные. Внешним ключом FK в R2 является подмножество атрибутов переменной R2 такое, что выполняются следующие требования:

1. В переменной отношения R1 имеется потенциальный ключ CK такой, что FK и CK совпадают с точностью до переименования атрибутов (то есть переименованием некоторого подмножества атрибутов FK можно получить такое подмножество атрибутов FK’, что FK’ и CKсовпадают как по именами, так и по типам атрибутов).

2. В любой момент времени каждое значение FK в текущем значении R2 идентично значению CK в некотором кортеже в текущем значении R1. Иными словами, в каждый момент времени множество всех значений FK в R2 является (нестрогим) подмножеством значений CK вR1.

При этом для данного конкретного внешнего ключа FK → CK отношение R1, содержащее потенциальный ключ, называют главным, целевым, или родительским отношением, а отношение R2, содержащее внешний ключ, называют подчинённым, или дочерним отношением.

Поддержка внешних ключей также называется соблюдением ссылочной целостности. Реляционные СУБД поддерживают автоматический контроль ссылочной целостности.

 

 


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.014 с.