Дыхание в условиях пониженного и повышенного барометрического давления. — КиберПедия 

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Дыхание в условиях пониженного и повышенного барометрического давления.

2017-11-16 494
Дыхание в условиях пониженного и повышенного барометрического давления. 0.00 из 5.00 0 оценок
Заказать работу

Барометрическое давление воздуха при спуске под воду на каждые 10,4 м глубины увеличивается на 1 атм. Повышенное давление существует также в кессонах и при постройке тоннелей, мостов, гидростанций. Человек в таких случаях может находиться под давлением не свыше 505400 Па. Частота дыхания при этом уменьшается на 2-4 в 1 мин. Вдох становится легче и короче, выдох затруднен и удлинен. Газообмен не изменяется или немного повышен. При повышенном давлении воздуха количество эритроцитов в крови уменьшается, что связано с их накоплением в кровяных депо. Чем дольше человек находится в условиях повышенного давления и чем оно выше, тем больше азота растворяется в его крови.

При быстром переходе от повышенного давления к нормальному возникает опасность «кессонной болезни», которая выражается в том, что начинается выделение азота из тканей и крови. Пузырьки выделяющегося азота могут закупорить мелкие кровеносные сосуды. При закупорке кровеносных сосудов мозга наступают параличи и смерть. Безопасность подъема в условия нормального давления обеспечивается его постепенностью. Подъем с остановками и вдыхание O2, ускоряющее выделение азота из организма, полностью устраняют опасность «кессонной болезни».

При дыхании кислородом в маске при повышенном давлении выдох становится активным, а вдох — пассивным, что приводит к перестройке нервной регуляции дыхания. Частота дыхания изменяется мало, а глубина его возрастает значительно. Легочная вентиляция увеличивается более чем в 2-3 раза. В результате гипервентиляции легких происходит избыточное удаление CO2 и давление СO2 в альвеолярном воздухе падает с 5320 Па до 3325 Па и ниже, что создает угрозу гипокапнии — падения содержания углекислоты в крови. В грудной полости создается положительное давление вместо отрицательного, что нарушает кровообращение в большом и малом кругах. Повышенное венозное давление компенсирует избыток давление в легких.

Снижение барометрического давления ведет к уменьшению парциального напряжения кислорода во всех звеньях кислородтранспортной системы организма, хотя усиленная легочная вентиляция и другие физиологические механизмы препятствуют снижению содержания кислорода в крови и других тканях тела.

В результате вблизи митохондрий давление кислорода может быть равно 10 мм рт. ст. на уровне моря и около 5 мм рт. ст даже на высоте 5600 м. Такое давление все еще достаточно, чтобы обеспечить оптимальные условия для протекания окислительных ферментативных реакций в клетках тела.

 

ФИЗИОЛОГИЯ КРОВООБРАЩЕНИЯ.

1. Кровообращение. Основы гемодинамики. Факторы, обеспечивающие по-

ступательное движение крови.

Кровообращение – это один из наиболее важных процессов, происходящих в живых организмах. Раздел биофизики, изучающий законы движения крови по сосудистой системе, называют гемодинамикой (греч. haima – кровь). Общие законы течения жидкости, изучаемые гидродинамикой, установлены в рамках классической физики и являются основой для описания сложных гемодинамических процессов в живом организме. Однако свойства крови во многом отличны от свойств применяемых в технике жидкостей, а обладающие упругими стенками и многократно ветвящиеся кровеносные сосуды значительно отличаются, например, от системы водопроводных труб. Поэтому биофизика рассматривает лишь упрощѐнную модель кровообращения.

Для понимания многих физиологических явлений необходимо знать связь между давлением и скоростью движения крови, а также зависимость этих величин от свойств крови, кровеносных сосудов и от работы сердца. На основе этих количественных закономерностей возможна разработка методов диагностики и лечения целого ряда заболеваний.

Одной из особенностей физической моделисердечно-сосудистойсистемы является эластичность еѐ стенок. Под эластичностью понимают способность материала или изделия испытывать более или менее значительные упругие обратимые деформации при сравнительно небольших усилиях.

Стенки кровеносных сосудов неодинаковы по своему строению. Аорта и крупные артерии имеют стенки, состоящие, помимо мышечных волокон, из эластина и коллагена. Эластин допускает деформации до200-300%,коллаген до 10%. Артериолы состоят полностью только из мышечной ткани, растяжимость которых значительно меньше. Стенки же капилляров не покрыты ни эластичной, ни мышечной тканью.

Течение жидкости по трубам (сосудам) с эластичными стенками обладает определѐнной спецификой. При постоянном давлении эластичность стенок трубки не имеет существенного значения. Например, можно наблюдать одинаковое непрерывное стационарное вытекание жидкости из стеклянной (жѐсткой) и резиновой (эластичной) трубок.

Если через трубки пропускать пульсирующий поток, используя для этой цели периодически действующий насос, то характер истечения жидкости будет различным: из жѐсткой трубки – прерывистый, из эластичной – непрерывный. Когда такой насос проталкивает жидкость в трубу с эластичными стенками, уже заполненную жидкостью, то давление в трубке повышается, стенка еѐ растягивается и вмещает избыток жидкости. Затем, когда давление со стороны насоса падает, стенка трубки сокращается и потенциальная энергия стенки переходит в кинетическую энергию жидкости,

врезультате чего избыток жидкости из начального участка трубы переходит

вследующий еѐ участок, стенка которого сначала тоже растягивается, а затем, сжимаясь, перегоняет жидкость в остальные части трубы и т.д. Растяжение и постепенное сжатие стенок эластичной трубы обеспечивает более равномерное протекание в ней жидкости при пульсирующем насосе.

Другой особенностью сердечно-сосудистой системы является то, что она представляет замкнутую, многократно разветвлѐнную и заполненную жидкостью систему трубок, движение жидкости, в которой происходит под действием ритмически работающего нагнетательного насоса (сердца). Из рис.1 видно последовательное соединение аорты(1-2),артерий и артероил(2-3),капилляров(3-4),венул(4-5)и вен(5-6),а такжепараллельное соединение артерий и артериол, капилляров и венул.

Общее гидравлическое сопротивление этих соединений можно определить по аналогии с законами соединения резисторов: для последовательного соединения – Z=Z1+Z2+…+Zn; для параллельного -

Рассмотрим гемодинамические показатели в разных участках сосудистой системы. Гидравлическое сопротивление Z в значительной

степени зависит от радиуса сосуда Z ~ R14. Отношение радиусов для различных участков сосудистой системы: Rаорт: Rар: Rкап ≈ 3000:500:1, поэтому можно записать соотношение Zкап>Zар>Zаорт. Площадь суммарного просвета всех капилляров в500-600раз больше поперечного сечения аорты.

По закону неразрывности струи это означает, что кап 5001 аорт. И если в аорте средняя скорость равна примерно 0,5м/с, то в капиллярах 0,3-0,5мм/с. Именно в капиллярной сети при медленной скорости движения происходит обмен веществ между кровью и тканями. На рис.2 приведена кривая (1) распределения линейных скоростей вдоль сосудистой системы.

При сокращении сердца давление крови в аорте испытывает колебания. Рассмотрим среднее давление за период. Падение среднего давления вдоль сосудов может быть описано законом Пуазейля.

Сердце выбрасывает кровь под средним давлением pср. По мере продвижения по сосудам среднее давление падает. Поскольку Q=const, а Zкап>Zар>Zаорт, то для средних значений падения давления: pкап> pар> pаорт. В крупных сосудах среднее давление падает всего на 15%, а в мелких на 85%. Это означает, что большая часть энергии, затрачиваемой левым желудочком сердца на изгнание крови, расходуется на еѐ течение по мелким сосудам. Распределение давления (превышение над атмосферным) в различных отделах сосудистого русла представлено на рис.2 (кривая 2). Отрицательное значение давления означает, что оно ниже атмосферного. Заштрихованная область соответствует колебанию давления: pс – систолическое давление ≈ 120 мм.рт.ст.; pд – диастолическое давление ≈ 80 мм.тр.ст.

 

Движение крови по артериям обусловлено следующими факторами:

1. Работой сердца, обеспечивающего восполнение энергозатрат системы кровообращения.

2. Упругостью стенок эластических сосудов. В период систолы энергия систолической порции крови переходит в энергию деформации сосудистой стенки. Во время диастолы стенка сокращается и ее потенциальная энергия переходит в кинетическую. Это способствует поддержанию снижающегося артериального давления и сглаживанию пульсаций артериального кровотока.

3. Разность давлений в начале и конце сосудистого русла. Она возникает в результате затраты энергии на преодоление сопротивления току крови. Сопротивление кровотоку в сосудах зависит от вязкости крови, длины и, в основном, от диаметра сосудов. Чем он меньше, тем больше сопротивление, а следовательно разность давления в начале и конце сосуда. В сосудистой системе сопротивление изменяется неравномерно. Поэтому неравномерно снижается и кровяное давление. В артериях оно уменьшается на 10%, артериолах и капиллярах на 85%, венах на 5 %. Таким образом, наибольший вклад в общее периферическое сопротивление (ОПС) вносят сосуды резистивного и обменного типа. Стенки вен более тонкие и растяжимые, чем у артерий. Энергия сердечных сокращений в основном уже затрачена на преодоление сопротивления артериального русла. Поэтому давление в венах невысокое и требуются дополнительные механизмы, способствующих венозному возврату к сердцу.

Венозный кровоток обеспечивают следующие факторы:

1. разность давлений в начале и конце венозного русла;

2. сокращения скелетных мышц при движении, в результате которых кровь выталкивается из периферических вен к правому предсердию;

3. присасывающее действие грудной клетки. На вдохе давление в ней становится отрицательным, что способствует венозному кровотоку;

4. присасывающее действие правого предсердия в период его диастолы. Расширение его полости приводит к появлению отрицательного давления в нем;

5. сокращения гладких мышц вен.

Движение крови по венам к сердцу связано и с тем, что в них имеются выпячивания стенок, которые выполняют роль клапанов.


Поделиться с друзьями:

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.018 с.