Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Классическая клеточная теория. Авторы. Год. Основные положения.

2017-11-15 323
Классическая клеточная теория. Авторы. Год. Основные положения. 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Свойства живого

К основным свойствам живого можно отнести:

1. Химический состав. Живые существа состоят из тех же химических элементов, что и неживые, но в организмах есть молекулы веществ, характерных только для живого (нуклеиновые кислоты, белки, липиды).

2. Дискретность и целостность. Любая биологическая система (клетка, организм, вид и т.д.) состоит из отдельных частей, т.е. дискретна. Взаимодействие этих частей образует целостную систему (например, в состав организма входят отдельные органы, связанные структурно и функционально в единое целое).

3. Структурная организация. Живые системы способны создавать порядок из хаотичного движения молекул, образуя определенные структуры. Для живого характерна упорядоченность в пространстве и времени. Это комплекс сложных саморегулирующихся процессов обмена веществ, протекающих в строго определенном порядке, направленном на поддержание постоянства внутренней среды — гомеостаза.

4. Обмен веществ и энергии. Живые организмы — открытые системы, совершающие постоянный обмен веществом и энергией с окружающей средой. При изменении условий среды происходит саморегуляция жизненных процессов по принципу обратной связи, направленная на восстановление постоянства внутренней среды — гомеостаза. Например, продукты жизнедеятельности могут оказывать сильное и строго специфическое тормозящее воздействие на те ферменты, которые составили начальное звено в длинной цепи реакций.

5. Самовоспроизведение. Самообновление. Время существования любой биологической системы ограничено. Для поддержания жизни происходит процесс самовоспроизведения, связанный с образованием новых молекул и структур, несущих генетическую информацию, находящуюся в молекулах ДНК.

6.Наследственность. Молекула ДНК способна хранить, передавать наследственную информацию, благодаря матричному принципу репликации, обеспечивая материальную преемственность между поколениями.

7. Изменчивость. При передаче наследственной информации иногда возникают различные отклонения, приводящие к изменению признаков и свойств у потомков. Если эти изменения благоприятствуют жизни, они могут закрепиться отбором.

8. Рост и развитие. Организмы наследуют определенную генетическую информацию о возможности развития тех или иных признаков. Реализация информации происходит во время индивидуального развития — онтогенеза. На определенном этапе онтогенеза осуществляется рост организма, связанный с репродукцией молекул, клеток и других биологических структур. Рост сопровождается развитием.

9. Раздражимость и движение. Все живое избирательно реагирует на внешние воздействия специфическими реакциями благодаря свойству раздражимости. Организмы отвечают на воздействие движением. Проявление формы движения зависит от структуры организма.

Уровни организации жизни

1.Молекулярный уровень организации - это уровень функционирования биологических макромолекул - биополимеров: нуклеиновых кислот, белков, полисахаридов, липидов, стероидов. С этого уровня начинаются важнейшие процессы жизнедеятельности: обмен веществ, превращение энергии, передача наследственной информации. Этот уровень изучают: биохимия, молекулярная генетика, молекулярная биология, генетика, биофизика.

2.Клеточный уровень - это уровень клеток (клеток бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов, клеток многоклеточных организмов). Клетка - это структурная единица живого, функциональная единица, единица развития. Этот уровень изучают цитология, цитохимия, цитогенетика, микробиология.

3.Тканевый уровень организации - это уровень, на котором изучается строение и функционирование тканей. Исследуется этот уровень гистологией и гистохимией.

4.Органный уровень организации - это уровень органов многоклеточных организмов. Изучают этот уровень анатомия, физиология, эмбриология.

5.Организменный уровень организации - это уровень одноклеточных, колониальных и многоклеточных организмов. Специфика организменного уровня в том, что на этом уровне происходит декодирование и реализация генетической информации, формирование признаков, присущих особям данного вида. Этот уровень изучается морфологией (анатомией и эмбриологией), физиологией, генетикой, палеонтологией.

6.Популяционно-видовой уровень - это уровень совокупностей особей - популяций и видов. Этот уровень изучается систематикой, таксономией, экологией, биогеографией, генетикой популяций. На этом уровне изучаются генетические и экологические особенности популяций, элементарные эволюционные факторы и их влияние на генофонд (микроэволюция), проблема сохранения видов.

7.Экосистемный уровень организации - это уровень микроэкосистем, мезоэкосистем, макроэкосистем. На этом уровне изучаются типы питания, типы взаимоотношений организмов и популяций в экосистеме, численность популяций, динамика численности популяций, плотность популяций, продуктивность экосистем, сукцессии. Этот уровень изучает экология.

8.Биосферный уровень организации живой материи. Биосфера - это гигантская экосистема, занимающая часть географической оболочки Земли. Это мега-экосистема. В биосфере происходит круговорот веществ и химических элементов, а также превращение солнечной энергии.

Включения. Виды. Примеры.

Животная клетка

Помимо мембранных и немембранных органелл в клетках могут быть клеточные включения, представляющие собой непостоянные образования, то возникающие, то исчезающие в процессе жизнедеятельности клетки. Основное место локализации включений - цитоплазма, но иногда они встречаются и в ядре.

По характеру все включения - это продукты клеточного метаболизма. Они накапливаются главным образом в форме гранул, капель и кристаллов. Химический состав включений очень разнообразен.

Липоиды обычно откладываются в клетке в виде мелких капель.

Включения полисахаридов имеют чаще всего формулу гранул разнообразных размеров. У многоклеточных животных и простейших в цитоплазме клеток встречаются отложения гликогена.

Белковые включения встречаются реже, чем жировые и углеводные. Белковыми гранулами богата цитоплазма яйцеклеток, где они имеют форму пластинок, шариков, дисков, палочек. Белковые включения встречаются в цитоплазме клеток печени, клеток простейших и многих других животных.

К клеточным включениям относятся некоторые пигменты, например распространенный в тканях желтый и коричневый пигмент липофусцин, круглые гранулы которого накапливаются в процессе жизнедеятельности клеток, особенно по мере их старения. Сюда же относятся пигменты желтого и красного цвета - липохромы. Они накапливаются в виде мелких капель в клетках коркового вещества надпочечников и в некоторых клетках яичников.

В качестве включений во многих животных клетках присутствуют гранулы секрета, вырабатываемого в клетках разных типов, в первую очередь в железистых.

Растительная к-ка

Существуют жидкие и твердые включения. К образованию включений ведет избыточное накопление веществ. Очень часто в виде включений откладываются запасные питательные вещества. Главнейшее и наиболее распространенное из них – полисахарид крахмал.

Липидные (жировые) капли обычно располагаются в гиалоплазме и встречаются практически во всех растительных клетках. Это основной тип запасных питательных веществ большинства растений.

Запасные белки относятся к категории простых белков - протеинов в отличие от сложных белков - протеидов, составляющих основупротопласта. Наиболее часто запасные белки откладываются в семенах.

Растения в отличие от животных не имеют специальных выделительных органов и нередко накапливают конечные продукты жизнедеятельности протопласта в виде солей оксалата или карбоната кальция. Кристаллические включения в значительных количествах накапливаются в тканях и органах, которые растения периодически сбрасывают (листья, кора). Они откладываются исключительно в вакуолях.

Хим. Состав их.

1.23 Способы репродукции клеток

Различают два основных способа размножения клеток:

  • митоз (кариокенез) - непрямое деление клеток, которое присуще в основном соматическим клеткам;
  • мейоз или редукционное деление - характерно только для половых клеток.

В литературе нередко описывают третий способ деления клеток - амитоз или прямое деление клеток, которое осуществляется посредством перетяжки ядра и цитоплазмы, с образованием двух дочерних клеток или одной двуядерной. Однако в настоящее время принято считать, что прямой способ деления характерен только для старых и дегенерирующих клеток и является отражением патологии клетки. Возможен четвертый тип репродукции клетки - эндорепродукция, характеризуется увеличением объема клетки, увеличением количеством ДНК в хромосомах, увеличивается количество функциональных органелл. Клетка является гипертрофированной, но к увеличению числа клеток эндорепродукция не приводит, а лишь повышается функциональная активность клеток. Она наблюдается в клетках печени - гепатоцитах, в эпителии мочевого пузыря.

Отмеченные выше два основных периода в жизненном цикле часто делящихся клеток (митоз и интерфаза) в свою очередь подразделяются на фазы или периоды.

Митоз подразделяется на 4 фазы:

  • профаза;
  • метофаза;
  • анафаза;
  • телофаза.

В каждой фазе происходят определенные структурные преобразования.

Профаза характеризуется морфологическими изменениями ядра и цитоплазмы. В ядре происходит: конденсация хроматина и образование хромосом, состоящих из двух хроматид, исчезновение ядрышка, распад кариолеммы на отдельные пузырьки. В цитоплазме отмечается редупликация (удвоение) центриолей и расхождение их к противоположным полюсам клетки, формирование из микротрубочек веретена деления, репродукция зернистой эндоплазматической сети, а также уменьшение числа свободных и прикрепленных рибосом.

В метафазе происходит образование метафазной пластинки, или материнской звезды, неполное обособление сестринских хроматид друг от друга.

Анафаза характеризуется полным обособлением (расхождением) хроматид и образованием двух равноценных диплоидных наборов хромосом, расхождением хромосомных наборов к полюсам митотического веретена и расхождением самих полюсов.

Телофаза характеризуется деконденсацией хромосом каждого хромосомного набора, формированием из пузырьков ядерной оболочки, цитотомией - перетяжкой двуядерной клетки на две дочерние самостоятельные клетки, появлением ядрышка в ядрах дочерних клеток.

Интерфаза подразделяется на 3 периода:

  • J1, или пресинтетический;
  • S, или синтетический;
  • J2, или постсинтетический.

ЖИЗНЕННЫЙ ЦИКЛ КЛЕТКИ

Закономерные изменения структурно-функциональных характеристик клетки во времени составляют содержание жизненного цикла клетки (клеточного цикла). Клеточный цикл — это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти.

Важным компонентом клеточного цикла является митотический (пролиферативный) цикл —комплекс взаимосвязанных и согласованных во времени событий, происходящих в процессе подготовки клетки к делению и на протяжении самого деления. Кроме того, в жизненный цикл включается период выполнения клеткой многоклеточного организма специфических функций, а также периоды покоя. В периоды покоя ближайшая судьба клетки не определена: она может либо начать подготовку к митозу, либо приступить к специализации в определенном функциональном направлении (рис. 2.10).

Продолжительность митотического цикла для большинства клеток составляет от 10 до 50 ч. Длительность цикла регулируется путем изменения продолжительности всех его периодов. У млекопитающих время митоза составляет 1—1,5 ч, 02-периода интерфазы —2—5 ч, S-периода интерфазы — 6—10 ч.

Биологическое значение митотического цикла состоит в том, что он обеспечивает преемственность хромосом в ряду клеточных поколений, образование клеток, равноценных по объему и содержанию наследственной информации. Таким образом, цикл является всеобщим механизмом воспроизведения клеточной организации эукариотического типа в индивидуальном развитии.

Главные события митотического цикла заключаются в редупликации (самоудвоении) наследственного материала материнской клетки и в равномерном распределении этого материала между дочерними клетками. Указанным событиям сопутствуют закономерные изменения химической и морфологической организации хромосом — ядерных структур, в которых сосредоточено более 90% генетического материала эукари-отической клетки (основная часть внеядерной ДНК животной клетки находится в митохондриях).

Хромосомы во взаимодействии с внехромосомными механизмами обеспечивают: а) хранение генетической информации, б) использование этой информации для создания и поддержания клеточной организации, в) регуляцию считывания наследственной информации, г) удвоение (самокопирование) генетического материала, д) передачу его от материнской клетки дочерним.

26. Морфофункциональные особенности подготовки клетки к делению.

Основные стадии митоза.

1.Редупликация (самоудвоение) генетической информации материнской клетки и равномерное распределение ее между дочерними клетками. Это сопровождается изменениями структуры и морфологии хромосом, в которых сосредоточено более 90% информации эукариотической клетки.

2.Митотический цикл состоит из четырех последовательных периодов: пресинтетического (или постмитотического) G1, синтетического S, постсинтетического (или премитотического) G2 и собственно митоза. Они составляют автокаталитическую интерфазу (подготовительный период).

Фазы клеточного цикла:

1) пресинтетическая (G1). Идет сразу после деления клетки. Синтеза ДНК еще не происходит. Клетка активно растет в размерах, запасает вещества, необходимые для деления: белки (гистоны, структурные белки, ферменты), РНК, молекулы АТФ. Происходит деление митохондрий и хлоропластов (т. е. структур, способных к ауторепродукции). Восстанавливаются черты организации интерфазной клетки после предшествующего деления;

2) синтетическая (S). Происходит удвоение генетического материала путем репликации ДНК. Она происходит полуконсервативным способом, когда двойная спираль молекулы ДНК расходится на две цепи и на каждой из них синтезируется комплементарная цепочка.

В итоге образуются две идентичные двойные спирали ДНК, каждая из которых состоит из одной новой и старой цепи ДНК. Количество наследственного материала удваивается. Кроме этого, продолжается синтез РНК и белков. Также репликации подвергается небольшая часть митохонд-риальной ДНК (основная же ее часть реплицируется в G2 период);

3) постсинтетическая (G2). ДНК уже не синтезируется, но происходит исправление недочетов, допущенных при синтезе ее в S период (репарация). Также накапливаются энергия и питательные вещества, продолжается синтез РНК и белков (преимущественно ядерных).

S и G2 непосредственно связаны с митозом, поэтому их иногда выделяют в отдельный период — препрофазу.

После этого наступает собственно митоз, который состоит из четырех фаз. Процесс деления включает в себя несколько последовательных фаз и представляет собой цикл. Его продолжительность различна и составляет у большинства клеток от 10 до 50 ч. При этом у клеток тела человека продолжительность самого митоза составляет 1—1,5 ч, G2-периода интерфазы — 2—3 ч, S-периода интерфазы — 6—10 ч.

Стадии митоза. Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу. Так как он непрерывен, смена фаз осуществляется плавно — одна незаметно переходит в другую.

В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть — прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n2хр).

В метафазе хромосомы достигают максимальной спирализации и располагаются упорядоченно на экваторе клетки, поэтому их подсчет и изучение проводят в этот период. Содержание генетического материала не изменяется (2n2хр).

В анафазе каждая хромосома «расщепляется» на две хроматиды, которые с этого момента называются дочерними хромосомами. Нити веретена, прикрепленные к центромерам, сокращаются и тянут хроматиды (дочерние хромосомы) к противоположным полюсам клетки. Содержание генетического материала в клетке у каждого полюса представлено диплоидным набором хромосом, но каждая хромосома содержит одну хроматиду (2nlxp).

В телофазе расположившиеся у полюсов хромосомы деспирализуются и становятся плохо видимыми. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах образуются ядрышки. Разрушается веретено деления. Одновременно идет деление цитоплазмы. Дочерние клетки имеют диплоидный набор хромосом, каждая из которых состоит из одной хроматиды (2n1хр).

Нетипичные формы митоза

К нетипичным формам митоза относятся амитоз, эндомитоз, политения.

1. Амитоз — это прямое деление ядра. При этом сохраняется морфология ядра, видны ядрышко и ядерная мембрана. Хромосомы не видны, и их равномерного распределения не происходит. Ядро делится на две относительно равные части без образования митотического аппарата (системы микротрубочек, центриолей, структурированных хромосом). Если при этом деление заканчивается, возникает двухъядерная клетка. Но иногда перешнуровывается и цитоплазма.

Такой вид деления существует в некоторых дифференцированных тканях (в клетках скелетной мускулатуры, кожи, соединительной ткани), а также в патологически измененных тканях. Амитоз никогда не встречается в клетках, которые нуждаются в сохранении полноценной генетической информации, — оплодотворенных яйцеклетках, клетках нормально развивающегося эмбриона. Этот способ деления не может считаться полноценным способом размножения эукариотических клеток.

2. Эндомитоз. При этом типе деления после репликации ДНК не происходит разделения хромосом на две дочерние хроматиды. Это приводит к увеличению числа хромосом в клетке иногда в десятки раз по сравнению с диплоидным набором. Так возникают полиплоидные клетки. В норме этот процесс имеет место в интенсивно функционирующих тканях, например, в печени, где полиплоидные клетки встречаются очень часто. Однако с генетической точки зрения эндомитоз представляет собой геномную соматическую мутацию.

3. Политения. Происходит кратное увеличение содержания ДНК (хромонем) в хромосомах без увеличения содержания самих хромосом. При этом количество хромонем может достигать 1000 и более, хромосомы при этом приобретают гигантские размеры. При политении выпадают все фазы митотического цикла, кроме репродукции первичных нитей ДНК. Такой тип деления наблюдается в некоторых высокоспециализированных тканях (печеночных клетках, клетках слюнных желез двукрылых насекомых). Политенные хромосомы дрозофил используются для построения цитологических карт генов в хромосомах.

Биологическое значение митоза.

Оно состоит в том, что митоз обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы.

Митотическое деление клеток лежит в основе всех форм бесполого размножения как у одноклеточных, так и у многоклеточных организмов. Митоз обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.

Эмбриональное развитие

Независимо от способа размножения, начало новому организму дает одна клетка, содержащая наследственные задатки и обладающая всеми характерными признаками и свойствами целого организма.

Индивидуальное развитие заключается в постепенной реализации наследственной информации, полученной от родителей.

Начало эволюционной эмбриологии положили русские ученые А.О. Ковалевский и И. И. Мечников. Они впервые обнаружили три зародышевых листка и установили принципы развития беспозвоночных и позвоночных животных. Онтогенезом, или индивидуальным развитием, называется весь период жизни особи с момента образования зиготы до гибели организма. Онтогенез делится на два периода:

эмбриональный период: от образования зиготы до рождения или выхода из яйцевых оболочек;

постэмбриональный период: от выхода из яйцевых оболочек или рождения до смерти организма.

Стадии эмбрионального развития (на примере ланцетника):

Дробление - многократное деление зиготы путем митоза. Образование бластулы - многоклеточного зародыша.

Гасптруляция - образование двухслойного зародыша - гаструлы с наружным слоем клеток (эктодермой) и внутренним, выстилающим полость (эктодермой). У многоклеточных животных часто вслед за образованием двухслойного зародыша, возникает третий зародышевый слой - мезодерма, который находится между экто-и энтодермой. Зародыш становится трехслойным. Сущность процесса гаструляции заключается а перемещении клеточных масс. Клетки зародыша практически не делятся и не растут. Появляются первый признаки дифференцировки клеток.

Органогенез - образование комплекса осевых органов: нервной трубки, хорды, кишечной трубки, мезодермальных сомеитов. Дальнейшая дифференцировка клеток приводит к возникновению многочисленных производных зародышевых листков - органов и тканей. Из эктодермы формируются: нервная система, кожа, органы зрения и слуха. Из энтодермы формируются: кишечник, легкие, печень, поджелудочная железа. Из мезодермы - хорда, скелет, мышцы, почки, кровеносная и лимфатическая системы.

В ходе органогенеза одни зачатки влияют на развитие других зачатков (эмбриональная индукция). Взаимодействие частей зародыша является основой его целостности. В период эмбрионального развития зародыш очень чувствителен к влиянию факторов среды. Такие вредные воздействия, как алкоголь, табак, наркотики, могут нарушить ход развития и привести к различным уродствам.

Постэмбриональное или послезародышевое развитие начинается с момента рождения или выхода из яйцевых оболочек и длится до смерти организма. Оно бывает двух типов: прямое и непрямое.

При прямом развитии родившиеся потомки во всем сходны с взрослыми особями, обитают в той же среде и питаются той же пищей, что обостряет внутривидовую конкуренцию (птицы, пресмыкающиеся, млекопитающие, некоторые насекомые и др.).

При непрямом развитии новый организм появляется на свет в виде личинки, претерпевающей в своем развитии ряд превращений - метаморфозов (амфибии, многие насекомые). Метаморфоз связан с разрушением личиночных органов и возникновением органов, присущих взрослым животным. Например, у головастика в процессе метаморфоза, происходящего под влиянием гормона щитовидной железы, исчезает боковая линия, рассасывается хвост, появляются конечности, развиваются легкие и второй круг кровообращения.

Значение метаморфоза:

Личинки могут самостоятельно питаться, расти и накапливать вещества для формирования постоянных органов, обитая в среде, нехарактерной для взрослых особей.

Личинки могут играть важную роль в расселении организмов. Например, личинки двухстворчатых моллюсков.

Разная среда обитания снижает интенсивность внутривидовой борьбы за существование.

Непрямое развитие особей является важным приспособлением, возникшим в ходе эволюции.

Способы гаструляции

- Инвагинация — происходит путем впячивания стенки бластулы в бластоцель; характерна для большинства групп животных.

- Деляминаци я (характерна для кишечнополостных) — клетки, находящиеся снаружи, преобразуются в эпителиальный пласт эктодермы, а из оставшихся клеток формируется энтодерма. Обычно деляминация сопровождается делениями клеток бластулы, плоскость которых проходит «по касательной» к поверхности.

- Иммиграция — миграция отдельных клеток стенки бластулы внутрь бластоцеля.

- Униполярная — на одном участке стенки бластулы, обычно на вегетативном полюсе;

- Мультиполярная — на нескольких участках стенки бластулы.

- Эпиболия — обрастание одних клеток быстро делящимися другими клетками или обрастание клетками внутренней массы желтка (при неполном дроблении).

- Инволюция — вворачивание внутрь зародыша увеличивающегося в размерах наружного пласта клеток, который распространяется по внутренней поверхности остающихся снаружи клеток.

Органогенез.

Органогенез — последний этап эмбрионального индивидуального развития, которому предшествуют оплодотворение, дробление, бластуляция и гаструляция.

В органогенезе выделяют нейруляцию, гистогенез и органогенез.

В процессе нейруляции образуется нейрула, в которой закладывается мезодерма, состоящая из трёх зародышевых листков (третий листок мезодермы расщепляется на сегментированные парные структуры — сомиты) и осевого комплекса органов — нервной трубки, хорды и кишки. Клетки осевого комплекса органов взаимно влияют друг на друга. Такое взаимное влияние получило название эмбриональной индукции.

В процессе гистогенеза образуются ткани организма. Из эктодермы образуются нервная ткань и эпидермис кожи с кожными железами, из которых впоследствии развивается нервная система, органы чувств и эпидермис. Из энтодермы образуются хорда и эпителиальная ткань, из которой впоследствии образуются слизистые, лёгкие, капилляры и железы (кроме половых и кожных). Из мезодермы образуются мышечная и соединительная ткань. Из мышечной ткани образуются ОДС, кровь, сердце, почки и половые железы.

Дифференцировка мезодермы.

Дифференцировка мезодермы начинается в конце 3-й недели развития. Из мезодермы возникает мезенхима.

Дорсальная часть мезодермы, которая расположена по бокам от хорды, подразделяется на сегменты тела - сомиты, из которых развиваются кости и хрящи, поперечнополосатая скелетная мускулатура и кожа.

Из вентральной несегментированной части мезодермы - спланхнотома образуются две пластинки: спланхноплевра и соматоплевра, из которых развивается мезотелий серозных оболочек, а пространство между ними превращается в полости тела, пищеварительную трубку, клетки крови, гладкую мышечную ткань, кровеносные и лимфатические сосуды, соединительную ткань, сердечная поперечнополосатая мышечная ткань, корковое вещество надпочечника и эпителий половых желез.

На границе между сомитами и спланхнотомами из мезодермы образуются нефрототы, из которых развиваются эпителий почек и семявыносящих путей. На 4-й неделе из эктодермы формируются зачатки органа слуха (вначале слуховые ямки, затем слуховые пузырьки) и зрения (будущие хрусталики над возникающими из боковых выпячиваний головного мозга глазными пузырями). В это же время преобразуются висцеральные отделы головы, группирующиеся вокруг ротовой бухты, которую спереди охватывают лобный и верхнечелюстной отростки. Каудальнее последних видны контуры нижнечелюстной и гиоидной (подъязычной) висцеральных дуг. На передней поверхности туловища зародыша выделяются сердечный, а за ним печеночный бугры. Углубление между этими буграми указывает на место образования поперечной перегородки - одного из зачатков диафрагмы. Каудальнее печеночного выроста находится брюшной стебелек, включающий крупные кровеносные сосуды и соединяющий эмбрион с внезародышевыми оболочками (пупочный канатик). К концу 1-го месяца развития заканчивается закладка основных органов зародыша, который имеет длину 6,5 мм. На 5 - 8-й неделе у зародыша развиваются органы - сердце, легкие, усложняется строение кишечной трубки, формируются висцеральные и жаберные дуги, образуются капсулы органов чувств; нервная трубка полностью замыкается и расширяется в головном конце (будущий головной мозг). В возрасте около 31 - 32 дней (5-я неделя) длина зародыша составляет 7,5 мм.

II.

История изучения ДНК.

Дезоксирибонуклеи́новая кислота́ (ДНК) — макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная роль ДНК в клетках — долговременное хранение информации о структуре РНК и белков.

ДНК была открыта Иоганном Фридрихом Мишером в 1869 году. Из остатков клеток, содержащихся в гное, он выделил вещество, в состав которого входят азот и фосфор. Вначале новое вещество получило название нуклеин, а позже, когда Мишер определил, что это вещество обладает кислотными свойствами, вещество получило название нуклеиновая кислота. Биологическая функция новооткрытого вещества была неясна, и долгое время ДНК считалась запасником фосфора в организме. Более того, даже в начале XX века многие биологи считали, что ДНК не имеет никакого отношения к передаче информации, поскольку строение молекулы, по их мнению, было слишком однообразным и не могло содержать закодированную информацию.

Постепенно было доказано, что именно ДНК, а не белки, как считалось раньше, является носителем генетической информации. Одно из первых решающих доказательств принесли эксперименты О. Эвери, Колина Мак-Леода и Маклин Мак-Карти (1944 г.) по трансформации бактерий. Им удалось показать, что за так называемую трансформацию (приобретение болезнетворных свойств безвредной культурой в результате добавления в неё мёртвых болезнетворных бактерий) отвечают выделенные из пневмококков ДНК. Эксперимент американских учёных Алфреда Херши и Марты Чейз (эксперимент Херши—Чейз, 1952 г.) с помеченными радиоактивными изотопами белками и ДНК бактериофагов показали, что в заражённую клетку передаётся только нуклеиновая кислота фага, а новое поколение фага содержит такие же белки и нуклеиновую кислоту, как исходный фаг.

Вплоть до 50-х годов XX века точное строение ДНК, как и способ передачи наследственной информации, оставалось неизвестным. Хотя и было доподлинно известно, что ДНК состоит из нескольких цепочек, состоящих из нуклеотидов, никто не знал точно, сколько этих цепочек и как они соединены.

Структура двойной спирали ДНК была предложена Френсисом Криком и Джеймсом Уотсоном в 1953 году на основании рентгеноструктурных данных, полученных Морисом Уилкинсом и Розалинд Франклин, и «правил Чаргаффа», согласно которым в каждой молекуле ДНК соблюдаются строгие соотношения, связывающие между собой количество азотистых оснований разных типов. Позже предложенная Уотсоном и Криком модель строения ДНК была доказана, а их работа отмечена Нобелевской премией по физиологии или медицине 1962 г. Среди лауреатов не было скончавшейся к тому времени Розалинды Франклин, так как премия не присуждается посмертно.

Механизм репарации в ДНК.

Репарация — особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК, повреждённой при нормальном биосинтезе ДНК в клетке или в результате воздействия физическими или химическими агентами. Осуществляется специальными ферментными системами клетки.

Источники повреждения ДНК: УФ-излучение, химические вещества, радиация, ошибки репликации ДНК.

Основные типы повреждения: Повреждение одиночных нуклеотидов, повреждение пары нуклеотидов, разрыв цепи ДНК, образование поперечных сшивок между основаниями одной цепи или разных цепей ДНК.

Два типа нарушений структуры ДНК приводят к мутациям. Это, во-первых, включение нормальных нуклеотидов в аномальное окружение из последовательностей нуклеотидов, приводящих к образованию неправильно спаренных оснований и петель разных размеров. Во-вторых, появление повреждений ДНК в виде аномальных нуклеотидов в правильных последовательностях ДНК. В этом случае речь идет о различных химических модификациях нуклеотидов, включая их разрушение и образование поперечных сшивок. Повреждения ДНК могут приводить к задержке и блокированию репликации и транскрипции.

Как про-, так и эукариоты имеют несколько ферментных систем, которые восстанавливают исходную структуру азотистых оснований. К таким репаративным системам относитсясистема эксцизионной репарации ДНК, осуществляющая вырезание поврежденных нуклеотидов или азотистых оснований. Система ферментативной фотореактивации ДНК, основным компонентом которой является ДНК- фотолиаза, разделяет пиримидиновые димеры, превращая их в нормальные пиримидиновые основания.

Тонкая структура гена.

В типичном эксперименте по составлению карты штамм В бактерий заражают двумя различными мутантами rII и получают потомство, состоящее в основном из тех же двух типов мутантов, как и родители, но и, кроме того, из нескольких рекомбинантов. Общее число фагов определяется в результате подсчета стерильных пятен на штамме В. Если выращивать потомство на штамме бактерий К, то мутантные типы вымирают и остаются только рекомбинантные, так что появляется возможность установить более точное их соотношение1. Бензер доказал, что рекомбинации происходят в основном между аллелями внутри локуса rII, и смог определить генетическое расстояние между каждыми двумя мутантными участками (сайтами) и даже составить карту этих аллелей.

Небольшая часть этой карты выглядит следующим образом: каждый квадратик на карте означает аллель, отдельный от других аллелей; квадратики один над другим означают аллели, которые невозможно разделить, и, следовательно, они представляют собой мутации, возникающие в одной и той же позиции. Отсюда ясно, что Бензер создал карту, на которой ген можно поделить на различные участки, и каждый участок, по всей видимости, соответствует отдельной нуклеотидной паре ДНК.

Предложенная Бензером схема подтверждает также важное предположение о строении генов. Так как гены находятся в ДНК, было высказано предположение, что при синтезе белка последовательность оснований ДНК просто читается по порядку друг за другом. Но можно было предположить и другое: ген представляет собой отдельный «узел» ДНК, кодирующий белок каким-то более сложным способом. Результаты, полученные Бензером, доказывают, что ген обладает простой, линейной структурой, и это согласуется с самой простой гипотезой о функционировании ДНК.

Теория гена. Свойства гена.

В результате исследований элементарных единиц наследственности сложились представления, носящие общее название теории гена.

Основные положения этой теории сводятся к следующему:

Ген занимает определенный участок (локус) в хромосоме. Ген (цистрон) - это часть молекулы ДНК, представляющая собой определенную последовательность нуклеотидов и являющаяся функциональной единицей наследственной информации.

Число нуклеотидов, входящих в состав различных генов, неодинаково. Внутри гена могут происходить рекомбинации и мутирование.

Существуют структурные и функциональные гены.

Структурные гены кодируют синтез белков, но ген не принимает непосредственного участия в синтезе белка. ДНК - матрица для синтеза молекул и-РНК. Функциональные гены контролируют и направляют деятельность структурных генов. Расположение нуклеотидных триплетов в структурных генах коллинеарно последовательности аминокислот в полипептидной цепи, кодируемой данным геном. Молекулы ДНК, входящие в состав гена, способны к репарации, поэтом


Поделиться с друзьями:

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.084 с.