Связь биологии с другими науками. — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Связь биологии с другими науками.

2017-10-09 1387
Связь биологии с другими науками. 0.00 из 5.00 0 оценок
Заказать работу

Многообразие живой природы столь велико, что современную биологию нужно представлять как комплекс наук. Биология лежит в основе таких наук, как медицина, экология, генетика, селекция, ботаника, зоология, анатомия, физиология, микробиология, эмбриология и др. Биология совместно с другими науками образовала такие науки, как биофизика, биохимия, бионика, геоботаника, зоогеография и др. В связи с бурным развитием науки и техники появляются новые направления изучения живых организмов, появляются новые науки, связанные с биологией. Это еще раз доказывает, что живой мир является многогранным и сложным и он тесно связан с неживой природой.

Основные биологические науки:

Анатомия – внешнее и внутреннее строение организмов

Физиология – процессы жизнедеятельности

Медицина — заболевания человека, их причины и методы их лечения

Экология – взаимосвязи организмов в природе

Генетика – законы наследственности и изменчивости

Цитология- наука о клетках (строении, жизнедеятельности и т.д.)

Биохимия – биохимические процессы в живых организмах

Биофизика – физические явления в живых организмах

Селекция – создание новых и улучшение существующих сортов, пород, штаммов.

Палеонтология – ископаемые останки древних организмов.

Эмбриология- развитие зародышей.

2. Развитие человека после рождения (постнатальный период онтогенеза)

периодизация постнатального онтогенеза приводится в соответствии с рекомендациями VIII конференции по проблемам возрастной морфологии, физиологии и биохимии (1965)

возрастные периоды и их характеристика

1. Новорожденный (1-10 дней); для данного периода характерно вскармливание ребенка молозивом

2. Грудной возраст (10 дней - 1 год); вскармливание ребенка молоком; интенсивный рост тела (вес увеличивается в три раза, рост - в 1,5); в 0,5 года прорезываются молочные зубы

3. Раннее детство (1 - 3 года); прорезывание молочных зубов завершается к двум годам

4. Первое детство (4 - 7 лет); в 6 лет начинают прорезываться первые постоянные зубы

5. Второе детство (отрочество, 8-12 лет; у девочек 8 - 11 лет); активизируются процессы роста (главным образом, в длину), появляются вторичные половые признаки

6. Подростковый возраст (13 - 16 лет; у девочек 12 - 15 лет); активное половое созревание, формирование вторичных половых признаков; у мальчиков появляются поллюции и ломается голос, у девочек - начинаются менструации и развиваются молочные железы; у обоих полов отмечается скачкообразное увеличение роста (пубертатный скачок)

7. Юношеский возраст (17 - 21 год; у девушек 16 - 20 лет); окончание процессов роста и формирования организма

8. Зрелый возраст (22 - 60 лет; у женщин - 21 - 55 лет); существенных изменений формы и строения тела не происходит

9. Пожилой возраст (61 - 74 года; у женщин - 56 - 74 года); уменьшение веса и роста вследствие дстрофических и атрофических изменений тканей и органов и снижения в них воды

10. Старческий возраст (75 - 90 лет); изменения роста, веса и строения тела

11. Долгожители (свыше 90 лет)

3.По функциональному значению различают:структурные гены, характеризующиеся уникальными последовательностями нуклеотидов, кодирующих свои белковые продукты, которые можно идентифицировать с помощью мутаций, нарушающих функцию белка, и регуляторные гены - последовательности нуклеотидов, не кодирующие специфические белки, а осуществляющие регуляцию действия гена (ингибирование, повышение активности и др.).

Свойства гена.

дискретность — несмешиваемость генов;

стабильность — способность сохранять структуру;

лабильность — способность многократно мутировать;

множественный аллелизм — многие гены существуют в популяции во множестве молекулярных форм;

аллельность — в генотипе диплоидных организмов только две формы гена;

специфичность — каждый ген кодирует свой признак;

плейотропия — множественный эффект гена;

экспрессивность — степень выраженности гена в признаке;

пенетрантность — частота проявления гена в фенотипе;

амплификация — увеличение количества копий гена.

 

Билет 22

ДНК и РНК

В зависимости от того, какой моносахарид содержится в структурном звене полинуклеотида - рибоза или 2-дезоксирибоза, различают

рибонуклеиновые кислоты (РНК) и

дезоксирибонуклеиновые кислоты (ДНК).

В главную (сахарофосфатную) цепь РНК входят остатки рибозы, а в ДНК – 2-дезоксирибозы.
Нуклеотидные звенья макромолекул ДНК могут содержать аденин, гуанин, цитозин и тимин. Состав РНК отличается тем, что вместо тимина присутствуетурацил.

Молекулярная масса ДНК достигает десятков миллионов а.е.м. Это самые длинные из известных макромолекул. Значительно меньше молекулярная масса РНК (от нескольких сотен до десятков тысяч). ДНК содержатся в основном в ядрах клеток, РНК – в рибосомах и протоплазме клеток.

При описании строения нуклеиновых кислот учитывают различные уровни организации макромолекул: первичную и вторичную структуру.

Первичная структура нуклеиновых кислот – это нуклеотидный состав и определенная последовательность нуклеотидных звеньев в полимерной цепи.

Например:

В сокращённом однобуквенном обозначении эта структура записывается как...– А – Г – Ц –...

Под вторичной структурой нуклеиновых кислот понимают пространственно упорядоченные формы полинуклеотидных цепей.

Вторичная структура ДНК представляет собой две параллельные неразветвленные полинуклеотидные цепи, закрученные вокруг общей оси в двойную спираль.

Такая пространственная структура удерживается множеством водородных связей, образуемых азотистыми основаниями, направленными внутрь спирали.

Водородные связи возникают между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи. Эти основания составляют комплементарные пары (от лат. complementum - дополнение).

Образование водородных связей между комплементарными парами оснований обусловлено их пространственным соответствием. Пиримидиновое основание комплементарно пуриновому основанию:
Водородные связи между другими парами оснований не позволяют им разместиться в структуре двойной спирали. Таким образом,

ТИМИН (Т) комплементарен АДЕНИНУ (А),

ЦИТОЗИН (Ц) комплементарен ГУАНИНУ (Г).

Комплементарность оснований определяет комплементарность цепей в молекулах ДНК.
Комплементарность полинуклеотидных цепей служит химической основой главной функции ДНК – хранения и передачи наследственных признаков.
Способность ДНК не только хранить, но и использовать генетическую информацию определяется следующими ее свойствами:

 молекулы ДНК способны к репликации (удвоению), т.е. могут обеспечить возможность синтеза других молекул ДНК, идентичных исходным, поскольку последовательность оснований в одной из цепей двойной спирали контролирует их расположение в другой цепи (см. рисунок [113 Кб] илиflash-иллюстрацию [101 Кб]).

 молекулы ДНК могут направлять совершенно точным и определенным образом синтез белков, специфичных для организмов данного вида.
Видео "ДНК. Код Жизни"

Вторичная структура РНК. В отличие от ДНК, молекулы РНК состоят из одной полинуклеотидной цепи и не имеют строго определенной пространственной формы (вторичная структура РНК зависит от их биологических функций).
Основная роль РНК – непосредственное участие в биосинтезе белка. Известны три вида клеточных РНК, которые отличаются по местоположению в клетке, составу, размерам и свойствам, определяющим их специфическую роль в образовании белковых макромолекул:

информационные (матричные) РНК передают закодированную в ДНК информацию о структуре белка от ядра клетки к рибосомам, где и осуществляется синтез белка;

транспортные РНК собирают аминокислоты в цитоплазме клетки и переносят их в рибосому; молекулы РНК этого типа "узнают" по соответствующим участкам цепи информационной РНК, какие аминокислоты должны участвовать в синтезе белка;

рибосомные РНК обеспечивают синтез белка определенного строения, считывая информацию с информационной (матричной) РНК.

3.Изменчивость – общее свойство организмов изменять наследственные факторы и приобретать новые под действием мутаций, рекомбинации этих факторов, также проявляют вариабельность признаков под модификационным влияние окружающей среды.

Наследственная изменчивость(генотипическая):

1)Комбинативная. Не происходит изменения числа и структуры хромосом. 3 источника: кроссинговер, независимое расхождение хромосом в анафазе 1 мейоза, случайное слияние гамет при половом размножении.

2)Мутационная. Мутации – генотипические изменения на уровне ДНК, возникающие на разных уровнях организации наследственного материала. (генные, хромосомные, геномные).

Ненаследственная изменчивость(фенотипическая):

1)Модификационная. Модификации – фенотипические особенности, возникающие под действием внешних факторов. ГЕНОТИП + СРЕДА = ФЕНОТИП.

1.Полимерные формы нуклеиновых кислот называют полинуклеотидами. Цепочки из нуклеотидов соединяются через остаток фосфорной кислоты (фосфодиэфирная связь). Поскольку в нуклеотидах существует только два типа гетероциклических молекул, рибоза и дезоксирибоза, то и имеется лишь два вида нуклеиновых кислот — дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК).

Мономерные формы также встречаются в клетках и играют важную роль в процессах передачи сигналов или запасании энергии. Наиболее известный мономер РНК — АТФ, аденозинтрифосфорная кислота, важнейший аккумулятор энергии в клетке.

 

 

Билет 23

1. ГОМЕОСТАЗ,способность живых организмов сохранять относительное динамическое постоянство состава и свойств внутренней среды и устойчивость основных физиологических функций в условиях изменяющейся внешней среды. Предположение о существовании физиологических механизмов, обеспечивающих подобное равновесие, было высказано французским физиологом К. Бернаром в сер. 19 в. В 1930-х гг. американский физиолог У. Кеннон ввёл термин «гомеостаз».

У человека и высших животных гомеостаз обеспечивает постоянство объёма, клеточного и гуморального состава крови, тканевой жидкости и лимфы, температуры тела, кровяного давления и других показателей, что достигается за счёт взаимодействия нервной системы и желёз внутренней секреции (нейрогуморальная регуляция). Особо важную роль играют кора больших полушарий головного мозга, гипоталамус, гипофиз, эндокринные железы. К наиболее совершенным механизмам гомеостаза относятся процессы терморегуляции. Нарушения механизмов, обеспечивающих постоянство внутренней среды человека, расцениваются как «болезни гомеостаза».

Механизм гомеостаза у растений изучен слабо. Одним из доказательств его существования служит избирательное поступление катионов и анионов при всасывании воды из почвы в корень и распределение их по органам растений. У некоторых растений (полынь, джузгун) в течение суток водный режим меняется 5–8 раз. В критический период у них увеличиваются концентрация клеточного сока и осмотическое давление при снижении транспирации листьев. Неодинаков механизм поддержания водного баланса у галофитов (накопление солей в организме; выделение их наружу через специальные железы; ограничение их поступления). Только благодаря срабатыванию механизмов поддержания гомеостаза достигается жизнеобеспечение растений в неблагоприятных условиях существования.

2.

1. гаметогенез включает стадии размножения, роста и созревания клеток. Сперматогенез включает также стадию формирования (ее нет при овогенезе), в этом заключаются отличия сперматогенеза от овогенеза. Сперматозоиды проходят дополнительную четвертую стадию для того, чтобы приобрести своеобразную форму и сформировать аппарат движения.

2. Второе отличие сперматогенеза от овогенеза: из сперматоцита I порядка получается четыре половых клетки, а из ооцита I порядка получается одна полноценная половая клетка.

3. Яйцеклетки образуются циклически, процесс повторяется через 21-35 дней (менструальный цикл). После гибели яйцеклетки, что сопровождается кровотечением, изменившийся гормональный фон дает толчок к созреванию другой яйцеклетки.

Сравнительная характеристика овогенеза и сперматогенеза показывает, что у женщин мейоз начинается в период внутриутробного развития.

Ооциты I порядка у новорожденной девочки останавливаются в фазе мейоз I, и завершается созревание ооцита к моменту полового созревания. У мальчиков процесс образования сперматозоидов идет непрерывно и сохраняется в течение всей половой зрелости мужчины.

4. Из характеристики овогенеза и сперматогенеза следует, что существуют значительные различия в количестве образованных половых клеток в женском и мужском организме. Взрослый мужчина производит 30 миллионов спермиев в день, а женщина - порядка 500 зрелых яйцеклеток за всю свою жизнь.

5. Различия сперматогенеза и овогенеза заключаются также в том, что стадия размножения при сперматогенезе идет постоянно, а при овогенезе заканчивается после рождения.

6. Стадия роста при сперматогенезе короче, чем при овогенезе.

7. Стадия созревания при овогенезе имеет особенности, которые заключаются в неравномерности делений при созревании, что приводит к выделению полярных телец, что отсутствует при сперматогенезе.

8. Различия сперматогенеза и овогенеза заключаются в том, что сперматогенез более подвержен влиянию внешней среды, нежели овогенез, что связано с различием в расположении половых органов - семенники находятся вне брюшной полости.

9. Из сравнительной характеристики овогенеза и сперматогенеза можно увидеть, что, поскольку образование яйцеклеток начинается еще до рождения девочки, а завершается для яйцеклетки только после ее оплодотворения, то неблагоприятные факторы внешней среды могут повлечь генетические аномалии у потомства.

3.Наследование пола происходит по законам Менделя. Половые хромосомы (гетерохромосомы) не идентичны как по морфологии, так и по заключенной в них генетической информации. Сочетание половых хромосом в зиготе определяет пол будущего организма. Большая из хромосом – Х, меньшая – У.

При оплодотворении возможны 2 комбинации:

1)Яйцеклетка, содержащая Х хромосому, оплодотворяется сперматозоидом тоже с Х-хромосомой. В зиготе встречаются две Х-хромосомы. Из нее развивается женский организм.

2)Яйцеклетка, содержащая Х-хромосому оплодотворяется сперматозоидом с У-хромосомой. В зиготе сочетаются Х- и У-хромосомы. Из зиготы развивается мужской организм.

Хромосомные болезни – обширная группа наследственных патологических состояний, причиной которых являются изменения количества хромосом и нарушение их структуры:

1)Синдром Шеришевского-Тернера. Моносомия Х. единственная совместимая с жизнью моносомия. Диспропорция тела, рост ниже нормы, короткая шея со складками кожи, низкий рост волос на затылке, антимонголоидный разрез глаз, инфальтильность эмоций.

2)Синдром Клайнфельтера. Трисомия ХХУ в мужском организме. Некратное увеличение набора половых хромосом в мужском кариотипе. Недоразвитие семенников, отсутствие сперматогенеза, развитие вторичных половых признаков в сторону женских.

3)Синдром трисомии ХХХ. Нарушение функции яичников, снижении IQ, ранний климакс, высокий рост.

4)Синдром Дауна. Трисомия по 21 паре хромосом. Умственное отставание, гиперсаливация, наличие эпиканта, антимонголоидный разрез глаз, короткая жизнь, изменение формы ушных раковин, дерматоглифические особенности.

5)Синдром Патау. Трисомия по 13 паре хромосом. Расщепление мягкого и твердого неба, незаращение губы, недоразвитие или отсутствие глаз, многочисленные нарушения со стороны внутренних органов.

6)Синдром Эдвардса. Трисомия по 18 паре хромосом. Смерть наступает до 2 – 3 месяцев.

 

Билет 24

1. Гликолиз и тканевое дыхание. тканевое дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды. Высвобожденная энергия запасается в химических связях макроэргических соединений (АТФ и др.) и может быть использована по мере необходимости. Входит в группу процессов катаболизма. О физиологических процессах транспортировки к клеткам многоклеточных организмов кислорода и удалению от них углекислого газа см. статью Дыхание.

Гликолиз — путь ферментативного расщепления глюкозы — является общим практически для всех живых организмов процессом. У аэробов он предшествует собственно клеточному дыханию, у анаэробов завершается брожением. Сам по себе гликолиз является полностью анаэробным процессом и для осуществления не требует присутствия кислорода.

Первый его этап протекает с расходом энергии 2 молекул АТФ и включает в себя расщепление молекулы глюкозы на 2 молекулы глицеральдегид-3-фосфата. На втором этапе происходит НАД-зависимое окисление глицеральдегид-3-фосфата, сопровождающееся субстратным фосфорилированием, то есть присоединением к молекуле остатка фосфорной кислоты и формированием в ней макроэргической связи, после которого остаток переносится на АДФ с образованием АТФ.

Таким образом, уравнение гликолиза имеет следующий вид:

Глюкоза + 2НАД+ + 4АДФ + 2АТФ + 2Фн = 2ПВК + 2НАД∙Н + 2 АДФ + 4АТФ + 2H2O + 4Н+.

Сократив АТФ и АДФ из левой и правой частей уравнения реакции, получим:

Глюкоза + 2НАД+ + 2АДФ + 2Фн = 2НАД∙Н + 2ПВК + 2АТФ + 2H2O + 4Н+.

2.Размножение – это способность организмов производить себе подобных особей того же вида. Существует два типа размножения: половое и бесполое.

Древнейшим способом размножения на Земле было бесполое размножение.

Бесполое размножение.

Бесполое размножение происходит без образования специальных клеток, в нём участвует один организм, одна особь, при этом размножении образуются идентичные потомки.

Формы бесполого размножения:

1.Почкование – это форма бесполого размножения при которой новая особь образуется в виде выростов (почки) на теле родительской особи, а затем отделяется от неё и превращается в самостоятельную особь (гидра, дрожжи).

2.Фрагментация – это разделение особи на две или более частей, каждая из которых растёт и образуется отдельная особь (высшие растения, губка, дождевой червь).

3.Образование спор. Спора – это одноклеточная репродуктивная единица, состоящая из ядра и небольшого количества цитоплазмы под плотной оболочкой. Из споры образуется новая особь (низшие растения).

4.Деление. Бинарное деление клетки на две части. Ядро родительской особи один или несколько раз делится митозом, при этом образуется два или несколько дочерних ядер. Каждое из них окружается цитоплазмой и развивается в самостоятельный организм.

5.Шизогония – это множественное деление клетки. Сначала в клетке многократно делится ядро, затем вокруг каждого ядра обособляется участок цитоплазмы, который окружается плазматической мембраной. Затем происходит распад на отдельные клетки (малярийный плазмодий).

6.Вегетативное размножение. Осуществляется формирование дочернего организма из группы клеток материнского организма. У растений это размножение происходит за счёт вегетативных органов: корневищ, луковиц, клубней, усов.

В результате бесполого размножения образуются генетически идентичные особи. Скорость размножения очень высокая и в постоянных условиях организма быстро захватывают экологическую нишу.

Половое размножение.

Сущность полового размножения в перекомбинации генетического материала родительских особей. В результате дочерние особи становятся более разнообразными, и естественный отбор выбирает из них наиболее приспособленные. При половом размножении потомство получается в результате слияния гаплоидных клеток – гамет. При оплодотворении образуется зигота. Из которой развивается новый организм.

Оплодотворение – это процесс слияния сперматозоида с яйцеклеткой с последующим слиянием их ядер и образованием диплоидной зиготы. Биологическое значение этого процесса состоит в том, что при слиянии мужских и женских гамет образуется новый организм, несущий признак обоих родительских организмов.

3. Модификации. Модификациями называют изменения фенотипа, вызванные влиянием окружающей среды и не связанные с изменениями генотипа. При этом возникшее конкретное модифицированное изменение признака не наследуется, но диапазон такой изменчивости, или норма реакции, генетически детерминирована и наследуется. Модификации сохраняются лишь на протяжении жизни данного организма.

Модификационной изменчивости подвержены как количественные, так и качественные признаки. Возникновение модификаций связано с тем, что такие важнейшие факторы среды, как свет, тепло, влага, химический состав и структура почвы, воздух, воздействуют на активность ферментов и в известной мере изменяют ход биохимических реакций, протекающих в развивающемся организме. Этим, в частности, объясняется появление различной окраски цветков у примулы и шерсти у гималайских кроликов, о чем говорилось выше.

Примерами модификационной изменчивости у человека могут служить усиление пигментации кожи (загар) под влиянием ультрафиолетовых лучей, мощное развитие костно-мышечной системы в результате физических нагрузок и т. д. К модификационной изменчивости следует отнести также и явление физиологического гомеостаза — способности организмов противостоять колеблющимся условиям среды путем приспособительного реагирования. Так, у человека при пребывании на разных высотах над уровнем моря вырабатывается неодинаковое количество эритроцитов: в 1 mmj крови у людей, живущих в местностях на уровне моря, их в два раза меньше, чем у людей, живущих высоко в горах.

Число эритроцитов растет пропорционально подъему над уровнем моря. Это явление можно легко объяснить, если вспомнить, что главная функция эритроцитов — перенос кислорода от легких к тканям и углекислого газа от тканей к легким. Увеличение высоты над уровнем моря сопровождается снижением концентрации кислорода в атмосфере, что приводит к недостатку его в тканях. Поэтому насущная потребность в кислороде заставляет человека и животных адаптивно реагировать путем изменения числа эритроцитов на разных высотах.

Эта реакция обратима: переезд в места, расположенные на уровне моря, приводит к снижению числа эритроцитов в крови.

Билет 25

1.Наиболее популярна в настоящее время симбиотическая гипотеза происхождения эукариотических клеток, согласно которой основой, или клеткой-хозяином, в эволюции клетки эукариотического типа послужил анаэробный прокариот, способный лишь к амебоидному движению. Переход к аэробному дыханию связан с наличием в клетке митохондрии, которые произошли путем изменений симбионтов — аэробных бактерий, проникших в клетку-хозяина и сосуществовавших с ней.

Способность зеленых растений к фотосинтезу обусловлена присутствием в их клетках хлоропластов. Сторонники симбиотической гипотезы считают, что симбионтами клетки-хозяина, давшими начало хлоропластам, послужили прокариотическиесинезеленые водоросли.

Центральным и трудным для ответа является вопрос о происхождении ядра. Предполагают, что оно также могло образоваться из симбионта-прокариота. Увеличение количества ядерной ДНК, во много раз превышающее в современной эукариотической клетке ее количество в митохондрий или хлоропласте, происходило, по-видимому, постепенно путем перемещения групп генов из геномов симбионтов. Нельзя исключить, однако, что ядерный геном формировался путем наращивания генома клетки-хозяина (без участия симбионтов).

Согласно инвагинационной гипотезе, предковой формой эукариотической клетки был аэробный прокариот (рис. 1.4). Внутри такой клетки-хозяина находилось одновременно несколько геномов, первоначально прикреплявшихся к клеточной оболочке. Органеллы, имеющие ДНК, а также ядро, возникли путем впячивания и отшнуровывания участков оболочки с последующей функциональной специализацией в ядро, митохондрий, хлоропласты. В процессе дальнейшей эволюции произошло усложнение ядерного генома, появилась система цитоплазматических мембран.

Инвагинационная гипотеза хорошо объясняет наличие в оболочках ядра, митохондрий, хлоропластов, двух мембран. Однако она не может ответить на вопрос, почему биосинтез белка в хлоропластах и митохондриях в деталях соответствует таковому в современных прокариотических клетках, но отличается от биосинтеза белка в цитоплазме эукариотической клетки.


Поделиться с друзьями:

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.018 с.