Двойные интегралы, их геометрический смысл, свойства. Вычисление двойных интегралов. — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Двойные интегралы, их геометрический смысл, свойства. Вычисление двойных интегралов.

2017-10-08 369
Двойные интегралы, их геометрический смысл, свойства. Вычисление двойных интегралов. 0.00 из 5.00 0 оценок
Заказать работу

 

Двойным интегралом называют кратный интеграл с .

. Здесь — элемент площади в рассматриваемых координатах.

В прямоугольных координатах: , где — элемент площади в прямоугольных координатах.

Геометрический смысл двойного интеграла

Пусть функция принимает в области только положительные значения. Тогда двойной интеграл численно равен объему вертикального цилиндрического тела, построенного на основании и ограниченного сверху соответствующим куском поверхности .

Физический смысл

Если рассматривать перемещение, то первая производная - скорость, вторая - ускорение.
Соответственно, интеграл от ускорения - это скорость, двойной интеграл - перемещение.
Если рассмотреть график ускорения, то двойной интеграл от него - площадь под графиком.

Область D называется правильной в направлении оси OY (ОХ), если любая прямая, параллельная оси OY(OX) и проходящая через внутреннюю точку области Д пересекает ее границу в двух точках.

Рис. 23.3

Рис. 23.4

Граница области D, правильной в направлении оси OY (рис. 23.3), может быть задана уравнениями

и двойной интеграл в этом случае вычисляется по формуле

(23.5)

причем сначала вычисляется внутренний интеграл

в котором х считается постоянной. Выражение справа в (23.5) называется повторным, или двукратным интегралом.

Граница области D, правильной в направлении оси ОХ (рис. 23.4), может быть задана уравнениями:

Тогда двойной интеграл вычисляется по формуле

(23.6)

Если область D правильная в направлении ОХ и OY (правильная область), то применимы обе формулы.

Рассмотрим геометрический смысл формулы (23.5), для формулы (23.6) рассуждения аналогичные (вывод формул приведен в [6. С. 310]).

Предположим, что и граница области D является правильной в направлении оси OY.

Из разд. 23.1

Подсчитаем теперь объем V методом поперечных сечений (см. п.18.2.1):

(23.7)

Проводя через т. (х,0,0) плоскость перпендикулярно оси ОХ, получим в сечении криволинейную трапецию

(рис. 23.5), с площадью

для точек линии при постоянном х зависит только от у:

- (23.8)

площадь поперечного сечения цилиндрического тела. Подставляя (23.8) в (23.7), получаем

Рис. 23.5

Таким образом, в формуле (23.7) слева и справа имеем объем цилиндрического тела.

Формулы (23.5) и (23.6) выведены в предположении, что область имеет специальный вид.

В общем случае область D разбивают на конечное число частей, являющихся правильными, и вычисляют для каждой из частей интеграл по формуле (23.5) или (23.6). Интеграл по всей области (свойство 3°) равен сумме полученных интегралов.

Если область ГУ. то формулы (23.5) и (23.6)

примут вид

Пример:

Решение разбивается на три этапа:

1) построение области D;

2) переход к повторному интегралу, расстановка пределов интегрирован ия;

3) вычисление повторного интеграла.

Решая систему находим т. пересечения параболы

и прямой (1, 1), (-2, 4). Строим область, (-2, 4) D (рис. 23.6). Так как область правильная, то можно воспользоваться формулами (23.5) и (23.6).

При решении по (23.5) область придется разбить на две: ОВС и СВА, так как линия ОБА задается разными уравнениями:

Рис. 23.6

При вычислении по формуле (23.6) приходим к одному повторному интегралу Закончим решение, пользуясь последней формулой:

 

 

Дифференциал уравнения. Основные понятия. Нахождение уравнения по его решению

 

Дифференциальным уравнением называется уравнение, связывающее независимую переменную , искомую функцию и её производные , т. е. уравнение вида

Если искомая функция есть функция одной независимой переменной , дифференциальное уравнение называется обыкновенным.

Когда искомая функция есть функция двух и более независимых переменных, например, если , то уравнение вида

называется уравнением в частных производных. Здесь — неотрицательные целые числа, такие, что .

Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение. Например, дифференциальное уравнение — уравнение первого порядка, дифференциальное уравнение , где — известная функция, — уравнение второго порядка; дифференциальное уравнение — уравнение 9-го порядка.

Решением дифференциального уравнения n-го порядка на интервале называется функция , определенная на интервале вместе со своими производными до n-го порядка включительно, и такая, что подстановка функции в дифференциальное уравнение превращает последнее в тождество по на . Например, функция является решением уравнения на интервале . В самом деле, дифференцируя функцию дважды, будем иметь

Подставляя выражения и в дифференциальное уравнение, получим тождество

График решения дифференциального уравнения называется интегральной кривой этого уравнения.

 


Поделиться с друзьями:

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.012 с.