Порядок работы в химической лаборатории. — КиберПедия 

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Порядок работы в химической лаборатории.

2017-09-27 59
Порядок работы в химической лаборатории. 0.00 из 5.00 0 оценок
Заказать работу

1.1. К выполнению лабораторного практикума допускаются студенты, изучившие раздел 1 «Порядок работы в химической лаборатории» и раздел 2 «Меры предосторожности при выполнении лабораторных работ», прослушавшие инструктаж по технике безопасности и расписавшиеся в специальном журнале (листе инструктажа по технике безопасности).

1.2. Подготовка к каждой лабораторной работе является одним из видов самостоятельной работы студентов и осуществляется заранее. Для этого необходимо:

· предварительно проработать соответствующие разделы теоретического курса по учебнику и конспекту лекций,

· письменно в тетради для лабораторных работ дать ответы на вопросы и решить задачи, предлагаемые для подготовки к данной лабораторной работе данной работе,

· внимательно ознакомиться с содержанием предстоящей лабораторной работы и, по возможности, заранее оформить экспериментальную часть, оставив место для записей соответствующих наблюдений и выводов, которые будут сделаны во время проведения лабораторных работ.

1.3. Все лабораторные работы выполняются каждым студентом самостоятельно на своем рабочем месте, которое закрепляется за ним на все время практикума. Все опыты в лаборатории студенты проводят в рабочих халатах.

1.4. При выполнении работ необходимо соблюдать все меры предосторожности, последовательность операций и количественные соотношения веществ, указанные в руководстве. Запрещается проводить эксперименты, не предусмотренные данной лабораторной работой.

1.5. Для записи результатов опытов необходимо иметь отдельную тетрадь, на которой должны быть указаны наименование практикума, фамилия и инициалы студента, а так же его группа.

1.6. Записи в тетради для лабораторных работ должны быть краткими, четкими и заноситься сразу же после окончания каждого опыта. Отчет о выполненной лабораторной работе должен быть аккуратно оформлен. Он должен содержать следующие сведения:

· дату выполнению лабораторной работы,

· номер и название работы,

· ответы на вопросы и упражнения к данной лабораторной работе,

· номера параграфов и названия опытов в экспериментальной части,

· рисунки приборов или схемы установок,

· уравнения всех проделанных реакций,

· необходимые расчеты,

· результаты наблюдений,

· подробные выводы.

1.7. После окончания лабораторной работы следует привести в порядок свое рабочее место, вымыть посуду, убрать реактивы, вытереть стол, поставить стул на его постоянное место.

 

Меры предосторожности при выполнении

Лабораторных работ.

2.1. Все реактивы индивидуального пользования, представляющие собой разбавленные водные растворы кислот, солей и оснований, находятся на рабочих столах в специальных штативах в склянках с пипетками. Необходимые для проведения лабораторных работ реактивы общего пользования находятся в вытяжном шкафу. Там же, в специальных поддонах, расположены концентрированные растворы кислот и щелочей. Все растворы отбираются из склянок с помощью пипеток, при этом склянку из штатива доставать не следует. После использования реактива пипетку следует сразу же вернуть в соответствующую склянку.

2.2. При работе с сухими веществами их следует брать специальной ложечкой или шпателем. Если в руководстве нет указаний о количествах веществ, необходимых для опыта, то брать их следует в минимальном количестве.

2.3. Если реактив взят в избытке, то его нельзя выливать (высыпать) из пробирки обратно в склянку.

2.5. Все работы, связанные с применением или получением ядовитых или неприятно пахнущих веществ, а также с использованием концентрированных растворов кислот и щелочей, проводятся в вытяжном шкафу при включенной вытяжной вентиляции.

2.6. Запрещается выносить из лаборатории реактивы, посуду и оборудование и проводить эксперименты, не предусмотренные в методических указаниях к данной лабораторной работе.

2.7. При нагревании растворов в пробирке необходимо пользоваться специальным держателем для пробирок. Отверстие пробирки должно быть направлено в сторону от себя и соседей.

2.8. Запах вещества следует определять осторожно, направляя воздух над склянкой или пробиркой легким движением руки к себе.

2.9. При разбавлении серной кислоты следует строго соблюдать правило - добавлять кислоту в воду, а не наоборот!

2.10. Попавшую на лицо или руки кислоту необходимо тотчас же смыть сильной струей воды и на обожженное место наложить повязку из ваты, смоченной разбавленным раствором питьевой соды.

2.11. Попавшую на лицо или руки щелочь следует тотчас же смыть сильной струей воды и положить повязку из ваты, смоченной разбавленным раствором борной кислоты.

2.12. Обожженную горячими предметами кожу следует сразу смочить раствором пермаганата калия.

2.13. Необходимо остерегаться отравления газообразным хлором, бромом, сероводородом, оксидом углерода (II). В случае отравления следует вынести пострадавшего на воздух и обратиться к врачу.

ВНИМАНИЕ!

Во всех случаях, указанных в пунктах 2.11 – 2.14 необходимо поставить в известность преподавателя или дежурного лаборанта.

 

3. Химическая посуда, лабораторное оборудование и химические реактивы.

3.1. Химическая посуда.

3.1.1. Стеклянная посуда общего назначения.

Основным требованием, предъявляемым к стеклянной посуде, является ее химическая и термическая устойчивость. Химическая устойчивость – это свойство стекла противостоять разрушающему действию растворов щелочей, кислот и других веществ. Термическая устойчивость – способность посуды выдерживать резкие колебания температуры.

Лучшим стеклом для изготовления лабораторной посуды считается пирекс. Этот тип стеклаобладает термической и химической устойчивостью, имеет малый коэффициент термического расширения. В лабораторной практике наибольшее распространение получили следующие виды стеклянной посуды:

Пробирки простые и калиброванные (с делениями, указывающими объем) (рис. 1) используют для проведения опытов с небольшим количеством реактивов. Объем реактива в пробирке не должен превышать половины ее объема.

Лабораторные стаканы (рис. 2) выпускают различных размеров, с носиком и без носика, простые и калиброванные. Стаканы предназначены для выполнения самых разнообразных процедур.

Колбы различного размера и формы (круглые, конические, плоскодонные, круглодонные (рис. 3). Например, в лабораторной практике широко применяют конические плоскодонные колбы (колбы Эрленмейера). Колба Вюрца представляет собой круглодонную колбу с отводной трубкой под углом 60-800. Ее используют для получения газов и для отгонки жидкостей при атмосферном давлении.

Воронки химические (рис. 4) служат для переливания жидкостей и фильтрования; капельные воронки (рис.5) используют для введения в реакционную среду жидких реактивов небольшими порциями. Воронки делительные (рис. 5) применяют для разделения несмешивающихся жидкостей.

Капельницы (рис. 6) используют для введения реактивов малыми порциями, по каплям.

Бюксы (рис. 7) предназначены для взвешивания и хранения жидких и твердых веществ.

Часовые стекла (рис. 8) используют для проведения реакций в малых объемах (капельные реакции) и для взвешивания твердых веществ.

Холодильники (рис. 9) применяются для охлаждения и конденсации паров, образующихся при нагревании различных веществ. При перегонке применяют прямые холодильники (Либиха), а при кипячении растворов и жидкостей, экстракции и других подобных процессах используют обратные холодильники.

Кристаллизаторы (рис. 10) применяют для получения кристаллов веществ из насыщенных растворов или для охлаждения химических стаканов или колб с реагирующими веществами.

Аллонжи (рис. 11) играют роль соединительных элементов в установках по пергонке веществ.

Эксикаторы (рис. 12) применяют для медленного высушивания и хранения веществ, легко поглощающих влагу из воздуха. Нижнюю часть эксикатора заполняют водопоглощающими веществами (прокаленный хлорид кальция, концентрированная серная кислота, оксид фосфора (V) и др.). Над поглотителем на фарфоровом вкладыше помещают бюксы или тигли с веществами, подлежащими осушке. Различают два основных типа эксикаторов: обычные эксикаторы и вакуум-эксикаторы.

Аппарат Киппа (рис. 13) – прибор для периодического получения водорода, сероводорода, оксида углерода (IV) и других газов в лаборатории.

3.1.2. Фарфоровая посуда

По сравнению со стеклянной обладает большей химической устойчивостью к кислотам и щелочам, большей термостойкостью. Фарфоровые изделия можно нагревать до температуры около 12000С. Недостатком ее является непрозрачность и сравнительно большая масса. Фарфоровая посуда также разнообразна по форме и назначению.

Стаканы (рис. 14) бывают различной емкости, с ручкой и без ручки, с носиком и без носика.

Фарфоровые кружки так жебывают различной емкости (обычно от 250 мл до 2-х литров.)

Выпарительные чашки (рис. 15) используют для выпаривания и нагревания жидкостей.

Тигли (рис. 16) – сосуды, применяемые для прокаливания различных твердых веществ (осадков, минералов и т.п.), а также для сплавления и сжигания. При прокаливании веществ на пламени газовой горелки тигли закрепляют в проволочных треугольниках с фарфоровыми трубками (рис. 17).

Фарфоровые ступки с пестиком (рис. 18) применяют для измельчения твердых веществ. Перед работой ступка должна быть тщательно вымыта и высушена. Вещество насыпают в ступку в количестве не более 1/3 ее объема (иначе оно будет высыпаться из ступки при измельчении). При растворении твердого вещества в ступке (с одновременным растиранием) вначале насыпают твердое вещество, а затем к нему постепенно небольшими порциями при круговом движении пестика добавляют жидкость. Всю жидкость, которую берут для растворения, употреблять не следует: не менее 1/3 количества ее оставляют для того, чтобы по окончании растворения сполоснуть ступку и обмыть пестик, после чего этот раствор добавляют к ранее полученному раствору.

Фарфоровые ложки-шпатели (рис. 19) применяют для отбора веществ, для снятия осадков с фильтров и при многих других работах.

Воронки Бюхнера и фарфоровые сетки (рис. 20) применяют для фильтрования жидкостей при пониженном давлении (под вакуумом).

3.1.3. Мерная посуда.

 

Для измерения объемов жидкостей используют разнообразную мерную посуду: мерные колбы, мерные цилиндры, мензурки, пипетки и др.

Мерные колбы (рис. 21) служат для приготовления растворов точной концентрации и представляют собой круглые плоскодонные колбы с длинным и узким горлом, на котором нанесена тонкая черта. Эта отметка показывает границу, до которой следует наливать жидкость, чтобы ее объем соответствовал указанному на колбе значению. Цифры на колбе показывают объем жидкости (мл), на который она рассчитана. Мерные колбы обычно имеют притертые пробки. Применяют колбы на 50,100, 250, 500 и 1000 мл.

Мерные колбы меньшего объема, использующиеся для определения плотности жидкостей, называются пикнометрами.

Мерные цилиндры (рис. 22) представляют собой стеклянные сосуды, которые для большей устойчивости имеют широкое основание (дно) или специальную подставку. Снаружи на стенках цилиндров нанесены деления, указывающие объем (в мл). Мерные цилиндры бывают различной емкости: от 5 мл до 2 л. Их назначение – измерять (с определенной погрешностью) различные объемы жидкости.

Мензурки (рис. 23)-э то сосуды конической формы с делениями на стенке.

Пипетки (рис. 24) служат для отбора точно определенных относительно небольших объемов жидкостей. Они представляют собой стеклянные трубки небольшого диаметра с делениями. Некоторые пипетки имеют расширение посредине (пипетки Мора). Нижний конец пипетки слегка оттянут и имеет внутренний диаметр до 1 мм. На верхнем конце пипетки имеется метка, до которой набирают жидкость. Некоторые пипетки снабжены двумя метками. Обычно пипетки имеют емкость от 1 до 100 мл.

Бюретки (рис. 25) служат для отмеривания точных объемов жидкостей, преимущественно при химико-аналитических работах (титрование). Они могут иметь различную конструкцию и иметь разный объем.

 

3.1.4. Пластмассовая посуда.

В лабораторной практике используют посуду, изготовленную из полимерных материалов (полиэтилен, полипропилен, фторопласт и др.) При высокой химической устойчивости такая посуда обладает низкой термостойкостью, и поэтому ее обычно используют в работах, не требующих нагревания. Из полиэтилена изготовляют воронки для жидких и сыпучих веществ, промывалки, капельницы, флаконы и банки для транспортировки и хранения химических реактивов, пробирки для центрифугирования, пипет-дозаторы и наконечники к ним и др.

 

 

3.2. Металлическое оборудование.

 

В химических лабораториях широко применяют разнообразное металлическое оборудование, преимущественно стальное.

Штативы (рис. 26) с набором муфт, лапок и колец используют для закрепления на них во время работы различных приборов, стеклянной посуды (холодильников, колб, делительных воронок и пр.). Кольца, закрепленные на штативе, используют также при нагревании химической посуды на металлических асбестированных сетках (рис. 27) газовыми горелками.

Треноги (рис. 28) применяют в качестве подставок для различных приборов, колб и пр. Они особенно удобны при нагревании крупных по размеру колб и громоздких приборов.

Держатели для пробирок (рис. 29) – приспособления, которые используются при непродолжительном нагревании пробирок.

Пинцеты (рис. 30) – приспособления для захватывания мелких предметов, а также веществ, которые нельзя брать руками, например, металлический натрий.

Тигельные щипцы (рис. 30) применяют для захватывания горячих тиглей при извлечении их из муфельной печи, снятия раскаленных тиглей с фарфоровых треугольников и при всех работах, когда приходится иметь дело с раскаленными предметами.

Зажимы (рис. 31) – приспособления, используемые для зажимания резиновых трубок. Обычно применяют пружинные зажимы (зажимы Мора) и винтовые (зажимы Гофмана). Последние позволяют легко регулировать скорость вытекания жидкости или интенсивность прохождения газов.

 

3.3. Лабораторные нагревательные приборы.

 

В лаборатории применяют различные нагревательные приборы: газовые горелки, электрические плитки, бани, сушильные шкафы, муфельные печи и т. п.

Газовые горелки. Наиболее часто применяют газовые горелки Бунзена и Теклю (рис.32). В газовых горелках предусмотрено регулирование поступления воздуха с помощью вращения диска (горелка Теклю) или поворотом хомутика (горелка Бунзена). Горелка Теклю с регулировочным диском – более совершенный прибор, так как в ней можно точнее регулировать не только доступ воздуха, но и приток газа (с помощью винта). Зажигать газовую горелку нужно только через 1-2 с после пуска газа и при небольшом доступе воздуха. Затем следует отрегулировать доступ воздуха так, чтобы пламя стало несветящимся.

ВНИМАНИЕ! Необходимо помнить, что природный газ ядовит и образует с воздухом взрывоопасные смеси. Поэтому нельзя допускать утечки газа!

Бани (рис.33). Для продолжительного нагревания в пределах температуры 100-3000С применяют бани: водяную, песчаную и др. Они представляют собой, как правило, металлические чаши, заполненные водой (водяная баня) или сухим, чистым песком, прокаленным для удаления из него органических примесей (песчаная баня). Нагревание бань проводят пламенем газовой горелки. Используются также водяные и песчаные бани с электрообогревом.

Электрические плитки. В тех случаях, когда требуется нагревание, а пользоваться горелками нельзя (например, при перегонке воспламеняющихся легколетучих жидкостей) применяют электрические плитки.

Для нагревания круглодонной стеклянной посуды применяют колбонагреватели (рис.34).

Печи. Для получения температуры 600-14000С применяются электрические муфельные печи (рис.35). С помощью особого регулировочного устройства печь может нагреваться до определенной, заранее заданной температуры.

Сушильные шкафы (рис.36) имеют электрический обогрев и терморегулятор, позволяющий поддерживать постоянную температуру. Для наблюдения за температурой шкаф снабжен термометром. Высушиваемое вещество помещается в сушильный шкаф, отрегулированный на требуемую температуру, и выдерживается в нем при заданной температуре определенное время. В работах количественного характера сушку проводят несколько раз до достижения высушиваемым веществом постоянной массы.


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.048 с.