I. Управление коэффициентом усиления — КиберПедия 

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

I. Управление коэффициентом усиления

2017-09-26 543
I. Управление коэффициентом усиления 0.00 из 5.00 0 оценок
Заказать работу

Настройка усилителя на ОУ. Схема с ОУ (рнс. 4.1) счи­тается настроенной, если при E1 = E2=E3 = 0 выходное напряжение равно нулю. Этот режим работы ОУ устанавливается при условии R6=1/(1/R1 + 1/R2+1/R3+1/R4) (рис. 4.1,0); l/R3+l/R4+1/R5 = = l/R1+l/R2 (рис. 4.1,6). При точной настройке усилителя значи­тельно ослабляется влияние изменения входных токов от температу­ры и прочих воздействий на дрейф выходного сигнала. Это очень важно при создании усилителей постоянного тока, для усилителей переменного тока и фильтров, во избежание ограничения динамиче­ского диапазона устройств.

Плавная регулировка коэффициента передачи. На рис 42 пока­зано несколько схем включения.ОУ, в которых осуществляется плав­ная регулировка коэффициента передачи. Обозначим Rп — входное дифференциальное сопротивление, Ку.ио~ коэффициент усиления ОУ без ОС. На рис. 4.2 показаны схемы, которые имеют следующие па­раметры:

Рис. 4.1

Рис. 4.3 Рис. 4.4

 

Дискретное изменение коэф­фициента передачи. Дискретный способ регулирования усиления применяется при точных измере­ниях исследуемого сигнала. Приве­дены две схемы (рис. 4.3), кото­рые отличаются режимами работы усилителя в моменты переключе­ния с контакта-на контакт. В пер­вом случае один из входов ОУ находится в свободном положе­нии. Здесь входной сигнал не проходит- на выход. Во втором случае вход ОУ подключается через резистор R1 к общей шине. В этом режиме усилитель обладает максимальным усилением. От входного сигнала усилитель пер.еходит в режим насыщения.

Температурная стабилизация ОУ. Для температурной стабили­зации ОУ к его инвертирующему входу подключена терморегулирую-щая цепочка (рис- 4.4). Эта цепочка построена на двух стабилитро­нах. Стабилитрон VD1 имеет отрицательный ТКН, стабилитрон VD2, включенный в прямом направлении, имеет положительный ТКН. В результате с помощью потенциометра R2 можно выбрать любое значение ТКН, которое необходимо.для ОУ. С помощью потенцио­метра R4 компенсируется постоянное напряжение, поступающее от стабилитронов.

 

СДВОЕННЫЕ ОУ

 

Последовательное соединение двух ОУ. Последовательное соединение двух ОУ (рис. 4.5) позволяет получить большой коэффи­циент передачи, широкополосность и малый дрейф. Широкополосные усилители, как правило, имеют большой временной и температурный дрейф. В составном усилителе стабильный каскад с малым дрейфом непрерывно компенсирует напряжение сдвига нуля. Схема рис. 4.5, а, имеет два обособленных усилителя. Для настройки схемы необходи­мо иметь резисторы с точностью сопротивления 0,1 %. На схеме рис. 4.5,6 существует общая ООС, которая стабилизирует первый ОУ. В этой схеме резистор R1 должен иметь точность 0,1 %, а рези­стор R2 — 10 %. Дрейф нуля меньше 1 мВ при коэффициенте пере­дачи 103.

Рис. 4.5

Рис. 46 Рис. 4.7

 

Плавная регулировка коэффициента передачи параллельно вклю­ченных ОУ. Схема усилителя, приведенного на рис. 4.6, позволяет плавно уменьшать сигнал на одном выходе при одновременном уве­личении его на другом. Если потенциометр R5 находится в положе­нии, когда точка соединения резисторов R3 и R4 подключена к общей шине, то входной сигнал проходит через интегральную микросхему DA2. В другом крайнем положении потенциометра работает микро­схема DAL При прохождении входного сигцала через одну интег­ральную микросхему на входе другой сигнал не равен нулю. За счет сопротивления контактов входной сигнал ослабляется только на 80 дБ. В среднем положении потенциометра работают оба усилите­ля. В этом положении входное сопротивление схемы равно 70 кОм.

Сдвоенные ОУ. Для повышения температурной стабильности из­мерительных усилителей в схемах (рис. 4.7) объединяют два ОУ, поскольку они, обладают синхронным изменением параметров. Уси­литель обладает коэффициентом усиления более 200. Коэффициент усиления первого каскада рассчитывается по формуле Ky и 1=(2R1 +Rз)/R2, а коэффициент усиления второго каскада — Kу K2=R6}R4. Влияние входного синфазного сигнала и передачу его на выход как парафазного сигнала можно уменьшить, подобрав попарно равными сопротивления R4 и R5, а также R6 и R7. Схема имеет большое входное сопротивление, которое практически не зависит от изме­нения коэффициентов усиления ОУ.

Рис. 4.8 Рис 49

Составной ОУ. Усилитель, со­бранный по схеме рис. 4.8, обла­дает большим входным сопротив­лением. Если одиночный ОУ имеет входное сопротивление приблизи­тельно 0,5 МОм, то входное со­противление составного усилите­ля более 10 МОм. Это достигает­ся за счет глубокой ООС с по­мощью усилителя DA2. Этот же усилитель позволяет также значительно повысите (до 100 дБ) ко эффициент ослабления синфазного сигнала В этом случае необхо димо более тщательно подобрать сопротивления резисторов RL и R2 Усилители с симметричным выходом. Схема формирования двух-потярного выгодного напряжения (рис 49, а), имеет низкие входное и выходное сопротивления Для выравнивания выходных напряже ний как по положительному, так и по отрицательному выходам не­обходимо выполнить условия

Схема рис 4 3, б состоит из двух О У, включенных последователь­но. Здесь напряжение U2 = U1 (1+R2/R1), a U2=U1- (1+R4/R1) х (l+R2R1) Эта схема может быть использована при подаче вход ного сигнала на любой вход ОУ Она может иметь как малое вход ное сопротивление (когда сигнал подается на инвертирующий вход), так и большое входное сопротивление (когда сигнал поступает на неинвертирующич вход) Эта схема не симметрична и несбалансиро-вана На рис 4 9, в показана схема, где ОУ работают симметрично, причем они последовательно балансируют друг друга Выходное на пряжение опоедеаяется согласно выражениям U2 = U+1 (1+R1/R2) и U2+ = U1- (1+R1/R2) Эта схема имеет большое входное сопротив­ление

Схема с перекрестной балансировкой приведена на рис 4 9, г Она симметрична относительно входа и выхода, имеет большое входное сопротивление Выходное напряжение определяется выраже ниями

Для коэффициента передачи, равного единице, можно считать R1 = = R3 = 0, а R2=оо

РАСШИРЕНИЕ ВОЗМОЖНОСТЕЙ ОУ

 

Подключение ОУ к однополярному питанию. Для подключения усилителя к однополярному источнику питания создается делитель напряжения на стабилитронах VD1 it VD2 (рис 4 10) К искусствен нон нулевой точке между диодами подключается неинвертирующий вход усилителя Для развязки от постоянной составляющей на вхо­де и выходе включены конденса­торы С1 и С2

Операционный усилитель с большим выходным сигналом. Приведенная на рис 4 11 схема позволяет получить на выходе сигнал с амплитудой до 20 В Это достигается тем, что напряжение питания усилителя управляется выходным сигналом При этом разность напряжений между кон­тактами 4 и 7 остается без изменения (— 25 В) Следует иметь в ви­ду, что с помощью этой схемы нельзя получить большие коэффици­енты усиления. При большом выходном сигнале становится больше напряжение питания интегральной микросхемы, увеличивается на­пряжение между контактами 3, 7 и 2, 4 Это ведет к перенапряже­нию n переходов транзисторов, применяемых в микросхеме Для малых коэффициентов усиления напряжение на входах 2 и 3 ме­няется в такт питающему напряжению. При применении в этом устройстве интегральной микросхемы К140УД1Б не следует вывод 4 подключать к общей точке. В противном случае интегральная мик­росхема выйдет из строя.

Рис. 4.10 Рис 4.11 Рис 4.12

Рис. 4.13

 

Работа усилителя при увеличенных питающих напряжениях. Уси­литель (рис 4.12) позволяет подключить ОУ к источникам питания, напряжения которых превышают максимально допустимые напряже­ния ОУ. Стабилитроны VDJ и VD2 подключаются к источнику пита­ния ±50 В. Относительно средней точки на стабилитронах устанав­ливается напряжение ±13 В. Этим напряжением питается ОУ. По­скольку выходной сигнал усилителя снимается со средней точки, то мгновенные значения этого сигнала синхронно меняют уровни пита­ющих напряжений. Это отслеживание позволяет увеличить амплиту­ду выходного сигнала до 30 В при условии, что усилитель имеет коэффициент усиления, близкий к единице, т. е. R2/Rl = 1.

Мощный усилитель Двухполярных сигналов. Усилитель (рис. 4 13) состоит из двух ОУ с мощными транзисторами на выходе. Схема симметричная. Резисторами R4 и R5 устанавливается напряжение 0,3 В для устранения искажений типа «ступеньки» в выходном сиг­нале. Аналогичные функции выполняют резисторы R6, R7, R12R15. Нелинейные искажения уменьшаются также за счет ООС в каж­дом ОУ.

 

УСИЛИТЕЛИ МОЩНОСТИ

 

Усилитель с выходной мощностью 4 Вт. Усилитель (рис 4 14) выполнен по двухтактной схеме Для предварительного усиления служит интегральная микросхема типа К224УС5. Глубокая (до 40 дБ) ООС по переменному току позволяет получить малый коэф­фициент нелинейных искажений. Коэффициент гармоник и чувстви­тельность устанавливаются подбором сопротивления резистора R4 При сопротивлении резистора R4=150 Ом коэффициент усиления со­ставляет 100 — 150, а коэффициент гармоник 0,5 — 0,8 %. Наличие ОС по постоянному току обеспечивает стабильную работу усилителя как при изменении питающего напряжения, так и при изменении темпе­ратуры. Полоса частот 200 Гц — 10 кГц.

Рис. 4.14

Рис. 4.15

 

Усилитель с выходной мощностью 2 Вт. Усилитель- (рис. 4.15) отдает в нагрузку мощность 2 Вт при питающем напряжении 12 В, 0,8 Вт — при напряжении 9 В и 0,25 Вт — при напряжении 6 В. При максимальной мбщности коэффициент гармоник составляет 1 %. Входное сопротивление равно 25 кОм. Полоса рабочих частот 80 Гц — 12 кГц. Для обеспечения равномерности частотной характе­ристики и для устранения искажений типа «ступеньки» с выхода уси­лителя на вывод 3 микросхемы подается ООС. Изменением сопро­тивления резистора R3 можно регулировать ООС. При этом рас­ширяется полоса частот, уменьшаются нелинейности, но и падает коэффициент усиления.

Рис. 4.16 Рис. 4 17

 

Усилитель мощности на интегральной микросхеме К157УС1. Вы­ходная мощность усилителя 0,5 Вт. Чувствительность лежит в преде­лах 15 — 30 мВ. Коэффициент гармоник в полосе частот от 50 Гц до 15 кГц не превышает 0,3 %. При напряжении питания 12 В можно получить выходную мощность 1,5 Вт. Схема представлена на рис. 4 16.

Усилитель мощности на 12 Вт. Усилитель (рис. 4.17). имеет поло­су частот от 10 Гц до 20 кГц. В этой полосе частотная характеристи­ка имеет неравномерность 2.дБ. Коэффициент передачи может ме­няться от 1 до 100. Амплитуда выходного сигнала на нагрузке 3 Ом равна 9 В. Налаживание усилителя сводится к подбору корректиру­ющей цепочки интегральной микросхемы. Выходные транзисторы ра­ботают без начального смещения. «Ступенька» в выходном сигнале устраняется за счет ООС.,


Поделиться с друзьями:

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.019 с.