Связь спектра дискретизированного сигнала со спектром исходного сигнала. Теорема Котельникова. — КиберПедия 

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Связь спектра дискретизированного сигнала со спектром исходного сигнала. Теорема Котельникова.

2017-09-10 441
Связь спектра дискретизированного сигнала со спектром исходного сигнала. Теорема Котельникова. 0.00 из 5.00 0 оценок
Заказать работу

 

2.2.3.1. Связь спектра дискретизированного сигнала со спектром исходного сигнала

Таким образом, спектр дискретизированного сигнала описывается выражением (2.8):

.

Найдем связь между спектром дискретизированного сигнала и спектром исходного сигнала до его дискретизации .

Для этого учтем выражение для обратного преобразования Фурье . Соответственно, для дискретных значений сигнала можно записать следующую связь со спектром исходного непрерывного сигнала :

.

Подставим это соотношение в выражение для спектра дискретизированного сигнала:

.

Учтем, что

.

 

Воспользуемся фильтрующим свойством дельта-функции, в соответствии с которым:

.

 

Таким образом, можно записать следующее выражение, которое характеризует связь спектра дискретизированного сигнала со спектром исходного непрерывного сигнала:

 

. (3.1)

 

Таким образом, спектр дискретизированного сигнала представляет собой периодическую последовательность на оси частот с периодом спектров исходного непрерывного сигнала.

 

2.2.3.2. Восстановление исходного непрерывного сигнала. Теорема Котельникова.

 

Если исходный непрерывный сигнал ограничен верхней граничной частотой

,

то отдельные копии спектра не накладываются друг на друга в спектре дискретизированного сигнала.

Рисунок 3.1 – восстановление исходного непрерывного сигнала

 

В этом случае аналоговый сигнал , подвергшийся дискретизации, в соответствии с теоремой Котельникова может быть полностью восстановлен с помощью идеального ФНЧ, имеющего прямоугольную АЧХ:

Импульсная характеристика такого фильтра является обратным преобразованием Фурье от частотной характеристики:

.

В этом случае в соответствии с интегралом Дюамеля можно восстановить исходный ограниченный по спектру сигнал в базисе Котельникова с точностью до постоянного множителя:

 

. (3.2)

 

Точная формулировка теоремы Котельникова имеет следующий вид: произвольный сигнал, спектр которого не содержит частот выше , может быть полностью восстановлен, если известны дискретные значения этого сигнала, взятые через равные промежутки времени .

 

2.2.4. Z – преобразование дискретных сигналов

2.2.4.1. Определение z – преобразования

 

При математическом описании дискретных сигналов в выражении для спектра важную роль играет функция , которая при преобразованиях возводится в целую степень . Однако эта функция является трансцендентной функцией частоты , что существенно усложняет спектральный анализ. Для упрощения анализа вводят новую переменную , которая связана с частотой выражением:

.

При такой замене спектр дискретизированного сигнала преобразуется в рациональную функцию переменной :

, (4.1)

где - оригинал - преобразования;

- - изображение функции .

 

Полученное выражение называется прямым двухсторонним - преобразованием (одностороннее преобразование суммируется от 0 и совпадает с двухсторонним только для последовательностей, равных нулю для отрицательных значений аргумента ).

- преобразование дискретных сигналов является аналогом преобразования Лапласа для непрерывных сигналов. Вводится для:

- полезно иметь дискретный аналог преобразования Лапласа, справедливый для более широкого класса сигналов;

- при аналитических исследованиях и расчетах пользоваться - преобразованием более удобно.

 

Пример z – преобразования

 

Пусть необходимо получить z – изображение дискретного единичного скачка:

 

В результате применения z – преобразования к дискретному единичному скачку можно получить:

.

Таким образом, полученное выражение представляет собой сумму бесконечной геометрической прогрессии:

при .

Соответственно, z – изображение дискретного единичного скачка имеет вид:

 

.

 

2.2.4.2. Свойства z – преобразования

 

1. Линейность:

имеет z-преобразование .

2. Задержка:

Последовательность имеет Z-преобразование .

3. Обращение во времени:

Последовательность имеет z-преобразование .

4. Масштабирование:

Последовательность имеет z-преобразование .

5. Свертка:

Последовательность , характеризующая связь выходного сигнала через входной через импульсную характеристику дискретного фильтра , имеет Z-преобразование:

 

.

 

2.2.4.3. Обратное z – преобразование

 

Отыскание оригинала по заданному изображению производится с помощью обратного z – преобразования:

. (4.2)

Непосредственное вычисление интеграла (4.2) сложно или невозможно. Поэтому на практике обратное z-преобразование получают более простыми способами:

1. С использованием таблицы соответствий;

2. На основании теоремы Коши о вычетах;

3. Разложение изображения на простые дроби.

 

Обратное z-преобразование удобно использовать при отыскании отклика дискретной системы на дискретный сигнал и при отыскании импульсной характеристики дискретной системы при известной ее передаточной функции.

 

Для вычисления обратного z-преобразования с использованием таблицы соответствий в справочнике, содержащем таблицы оригиналов и соответствующих им изображений, находят оригинал для заданного изображения: Таблица 4.1. Достоинством способа является отсутствие необходимости вычисления обратного z-преобразования: просто анализируются результаты прямого z-преобразования для выбранных оригиналов. При вычислении прямого z-преобразования как правило используют выражение для суммы членов геометрической прогрессии и свойства z-преобразования. Недостатком способа является ограниченное число изображений в таблице.

Если z-изображение отсутствует в таблице соответствий, можно использовать разложение изображения на простые дроби. Например:

 

.

 

В этом случае, пользуясь свойством линейности z – преобразования и Таблицей 4.1 можно получить:

.

 

 

Таблица 4.1. Таблица соответствия

 

  Последовательность z-изображение
1.  
2.
3.
4.
5.
6.     ; ; ; .
7.   ; ; ; .

 

Вычисление обратного z – преобразования с использованием вычетов основано на теореме Коши. Суть теоремы заключается в том, что интеграл вида (4.2), позволяющий вычислить обратное z – преобразование, вычисляется как сумма вычетов во всех особых точках (полюсах):

, (4.3)

где - вычет функции в k-ом полюсе .

Например, для изображения имеется один полюс . Поэтому для получения обратного z – преобразования необходимо вычислить только один вычет:

.

 

2.2.5. Дискретное преобразование Фурье и его свойства

 

2.2.5.1 Дискретное преобразование Фурье

Спектральная плотность дискретизированного сигнала является непрерывной периодической функцией частоты с периодом .

Рисунок 1.1 – дискретизация сигнала по времени и по спектру

 

Однако для цифровой обработки требуется дискретизация сигнала не только во временной области, но и в частотной.

Для этого сплошной спектр должен быть представлен совокупностью своих дискретных значений .

Такой спектр может быть получен в результате периодического повторения последовательности с периодом .

В этом случае интервал между соседними спектральными составляющими равен:

. (1.1)

После подстановки получаем следующее выражение для спектральной плотности (с учетом перехода от бесконечной последовательности к конечной длительностью ):

 

, (1.2)

(для четного N).

 

Выражение (1.2) называют дискретным преобразованием Фурье (ДПФ), которое обычно записывается через аргументы и :

 

, (1.3)

.

 

С учетом периодичности ДПФ его можно записывать следующим образом:

 

, (1.4)

.

 

Можно показать, что обратное дискретное преобразование Фурье (ОДПФ) записывается в виде:

, (1.5)

.

 

Таким образом, дискретизированному сигналу соответствует сплошной спектр с периодической структурой. Дискретизированному спектру соответствует периодическая последовательность сигналов , повторяемых с периодом N.

ДПФ является линейным преобразованием, трансформирующим вектор временных отсчетов в вектор такой же длины, содержащей спектральные отсчеты. Такое преобразование может быть представлено как результат умножения некоторой квадратной матрицы на входной вектор-столбец:

 

, (1.6)

где - матрица преобразования.

 

Общая формула для элемента матрицы ДПФ, расположенного в - м столбце -й строки имеет вид:

, . (1.7)

Например, при матрица преобразования ДПФ запишется следующим образом:

. (1.8)

 

2.2.5.2. Свойства дискретного преобразования Фурье

 

1. Линейность ДПФ. ДПФ суммы дискретных последовательностей длительности N равна сумме ДПФ слагаемых суммы и имеет длину N:

 

; (2.1)

. (2.2)

 

2. ДПФ сумм последовательностей разной длины. Если в исходной сумме последовательностей разные длины: N1, N2, N3, …, то перед вычислением ДПФ всей последовательности необходимо привести последовательности к одинаковой длине N, равной максимальной длине исходных последовательностей, за счет дополнения нулями.

 

3. Сдвиг ДПФ. Сдвиг ДПФ по оси k вправо на величину k0 соответствует умножению исходной последовательности на комплексную экспоненту :

 

. (2.3)

 

4. Сдвиг исходной последовательности. Сдвиг последовательности вправо на m отсчетов (задержка последовательности) соответствует умножению ДПФ на комплексную экспоненту :

 

. (2.4)

 

5. Теорема Парсеваля. Теорема Парсеваля для периодических и конечных последовательностей:

 

. (2.5)

 

Теорема Парсеваля утверждает, что энергию сигнала можно вычислить как по переменной n во временной области, так и по переменной k в частотной области.

 

6. Свойство симметрии. Свойство симметрии вещественной последовательности:

, (2.6)

, (2.7)

; (2.8)

 

ось симметрии проходит через точку .

Для четного N:

, . (2.9)

 

Из последнего равенства следует, что и всегда действительные числа.

 

7. ДПФ вещественной последовательности. ДПФ вещественной последовательности полностью определено на интервале , который соответствует основному спектру сигнала.

 

 

2.2.6. Быстрое преобразование Фурье

 

Общие сведения о БПФ

 

Термином «быстрое преобразование Фурье» (БПФ) описывают алгоритмы вычисления дискретного преобразования Фурье, обеспечивающие экономию в требуемом числе арифметических операций и в первую очередь операций умножения.

Для вычисления одного коэффициента ДПФ необходимо выполнить операций комплексного умножения и суммирования. Таким образом, расчет всего ДПФ, содержащего коэффициентов, потребует пар операций «умножение – сложение».

Однако, если не является простым числом и может быть разложено на множители (в частности, является целочисленной степенью 2: , - целое число), то процесс вычислений можно ускорить, разделив исходную последовательность на части, вычислив для них ДПФ и объединив результаты.

При реализации БПФ возможно несколько вариантов организации вычислений в зависимости от способа деления исходной последовательности на части (прореживание по времени или по частоте) и от того, на сколько фрагментов производится разбиение последовательности на каждом шаге (основание БПФ).

Первый алгоритм БПФ с основанием 2, известный как алгоритм БПФ Кули-Тьюки был опубликован в 1965 г в США учеными Кули и Тьюки.


Поделиться с друзьями:

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.108 с.