Составление компоновочной схемы здания насосного цеха НПС — КиберПедия 

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Составление компоновочной схемы здания насосного цеха НПС

2017-09-10 177
Составление компоновочной схемы здания насосного цеха НПС 0.00 из 5.00 0 оценок
Заказать работу

 

Насколько это возможно, здание проектируют из типовых элементов с соблюдением норм строительного проектирования и единой модульной системы. Сетка колонн может быть, к примеру, 6 х 9; 6 х 12; 6 х 18; 12 х 12; 12 х 18 м.

В целях сохранения однотипности элементов покрытия колонны крайнего ряда располагают так, чтобы разбивочная ось ряда колонн проходила на расстоянии 250 мм от наружной грани колонн (рис. 1.16) при шаге колонн, равном 6 м и более.

Колонны крайнего ряда при шаге 6 м и кранах грузоподъемностью до 500 кН располагают с нулевой привязкой, совмещая ось ряда с наружной гранью колонны. Крайние поперечные разбивочные оси смещают от оси торцевых колонн здания на 500 м. При большой протяженности в поперечном и продольном направлениях здание делят температурными швами на отдельные блоки. Продольные и поперечные температурные швы выполняют на спаренных колоннах со вставкой, при этом у продольных температурных швов оси колонн смещены относительно продольной разбивочной оси на 250 мм, а у поперечных температурных швов – на 500 мм относительно поперечной разбивочной оси

 

Конструкции фундаментов

 

Различают фундаменты неглубокого заложения; свайные; глубокого заложения (опускные колодцы, кессоны) и фундаменты под машины с динамическими нагрузками.

Фундаменты неглубокого заложения

В инженерных нефтегазовых сооружениях, промышленных и гражданских зданиях широко применяют железобетонные фундаменты. Они бывают трех типов (рис. 4.19): отдельные – под каждой колонной; ленточные – под рядами колонн в одном или двух направлениях, а также под несущими стенами; сплошные – под всем сооружением. Фундаменты возводят чаще всего на естественных основаниях (они преимущественно и рассмотрены здесь), но в ряде случаев выполняют и на сваях. В последнем случае фундамент представляет собой группу свай, объединенную поверху распределительной железобетонной плитой – ростверком.

Отдельные фундаменты устраивают при относительно небольших нагрузках и достаточно редком размещении колонн. Ленточные фундаменты под рядами колонн делают тогда, когда подошвы отдельных фундаментов близко подходят друг к другу, что обычно бывает при слабых грунтах и больших нагрузках. Целесообразно применять ленточные фундаменты при неоднородных грунтах и внешних нагрузках, различных по значению, так как они выравнивают неравномерные осадки основания. Если несущая способность ленточных фундаментов недостаточна или деформации основания под ними больше допустимых, то устраивают сплошные фундаменты. Они в еще большей мере выравнивают осадки основания. Эти фундаменты применяют при слабых и неоднородных грунтах, а также при значительных и неравномерно распределенных нагрузках.

Глубина заложения фундамента d\ (расстояние от отметки планировки до подошвы фундамента) обычно назначается с учетом:

—геологических и гидрогеологических условий площадки строительства;

—климатических особенностей района строительства (глубины промерзания);

– конструктивных особенностей зданий и сооружений. При назначении глубины заложения фундамента необходимо

также учитывать особенности приложения и величины нагрузок, технологию производства работ при возведении фундаментов, материалы фундаментов и другие факторы.

Минимальная глубина заложения фундаментов при строительстве на дисперсных грунтах принимается не менее 0,5 м от поверхности планировки. При строительстве на скальных грунтах достаточно бывает убрать только верхний, сильно разрушенный слой – и можно выполнять фундамент. Стоимость фундаментов составляет 4–6% общей стоимости здания.

Отдельные фундаменты колонн

По способу изготовления фундаменты бывают сборные и монолитные. В зависимости от размеров сборные фундаменты колонн выполняют цельными и составными. Размеры цельных фундаментов (рис. 4.20) относительно невелики. Их выполняют из тяжелых бетонов классов В15-В25, устанавливают на песчано-гравийную уплотненную подготовку толщиной 100 мм. В фундаментах предусматривают арматуру, располагаемую по подошве в виде сварных сеток. Минимальную толщину защитного слоя арматуры принимают 35 мм. Если под фундаментом нет подготовки, то защитный слой делают не менее 70 мм.

Сборные колонны заделывают в специальные гнезда (стаканы) фундаментов. Глубину заделки d2 принимают равной (1,0–1,5) – кратной большему размеру поперечного сечения колонны. Толщина нижней плиты гнезда должна быть не менее 200 мм. Зазоры между колонной и стенками стакана принимают следующими: понизу – не менее 50 мм; поверху – не менее 75 мм. При монтаже колонну устанавливают в гнездо с помощью подкладок и клиньев или кондуктора и рихтуют, после чего зазоры заполняют бетоном класса В 17,5 на мелком заполнителе.

Сборные фундаменты больших размеров, как правило, выполняют составными из нескольких монтажных блоков (рис. 4.21). На них расходуется больше материалов, чем на цельные. При значительных моментах и горизонтальных распорах блоки составных фундаментов соединяют между собой сваркой выпусков, анкеров, закладных деталей и т.п.

Монолитные отдельные фундаменты устраивают под сборные и монолитные каркасы зданий и сооружений.

Типовые конструкции монолитных фундаментов, сопрягаемых со сборными колоннами, разработаны под унифицированные размеры (кратные 300 мм): площадь подошвы – (1,5 х 1,5) – (6,0 х 5,4) м, высота фундамента – 1,5; 1,8; 2,4; 3,0; 3,6 и 4,2 м (рис. 4.22).

В фундаментах приняты: удлиненный подколонник, армированный пространственным каркасом; фундаментная плита с отношением размера вылета к толщине до 1:2, армированная двойной сварной сеткой; высоко размещенный армированный подколонник.

Монолитные фундаменты, сопрягаемые с монолитными колонками, бывают по форме ступенчатыми и пирамидальными (ступенчатые по устройству опалубки проще). Общую высоту фундамента принимают такой, чтобы не требовалось его армировать хомутами и отгибами. Давление от колонн передается на фундамент, отклоняясь от вертикали в пределах 45°. Этим руководствуются при назначении размеров верхних ступеней фундамента (см. рис. 4.23, в).

Монолитные фундаменты, как и сборные, армируют сварными сетками только по подошве. При размерах стороны подошвы более 3 м в целях экономии стали применяют нестандартные сварные сетки, в которых половину стержней не доводят до конца на 1/10 длины (см. рис. 4.23, д).

Для связи с монолитной колонной из фундамента выпускают арматуру с площадью сечения, равной расчетному сечению арматуры колонны у обреза фундамента. В пределах фундамента выпуски соединяют хомутами в каркас, который устанавливают на бетонные или кирпичные прокладки. Длина выпусков из фундаментов должна быть достаточной для устройства стыка арматуры согласно существующим требованиям. Стыки выпусков делают выше уровня пола. Арматуру колонн можно соединять с выпусками внахлестку без сварки по общим правилам конструирования таких стыков. В колоннах, центрально сжатых или внецен-тренно сжатых при малых эксцентриситетах, арматуру соединяют с выпусками в одном месте; в колоннах, внецентренно сжатых при больших эксцентриситетах, – не менее чем в двух уровнях с каждой стороны колонны. Если при этом на одной стороне сечения колонны находятся три стержня, то первым соединяют средний.

Арматуру колонн с выпусками лучше соединять дуговой сваркой. Конструкция стыка должна быть удобной для монтажа и сварки

Если все сечение армировано лишь четырьмя стержнями, то стыки выполняют только сварными.

Ленточные фундаменты

Под несущими стенами ленточные фундаменты выполняют преимущественно сборными. Они состоят из блоков-подушек и фундаментных блоков (рис. 4.24). Блоки-подушки могут быть постоянной и переменной толщины, сплошными, ребристыми, пустотными. Укладывают их вплотную или с зазорами. Рассчитывают только подушку, выступы которой работают как консоли, загруженные реактивным давлением грунта р (без учета массы веса и грунта на ней). Сечение арматуры подушки подбирают по моменту

 

М= 0,5р12,

 

где / – вылет консоли.

Толщину сплошной подушки h устанавливают по расчету на поперечную силу Q = pi, назначая ее такой, чтобы не требовалось постановки поперечной арматуры.

Ленточные фундаменты под рядами колонн возводят в виде отдельных лент продольного или поперечного (относительно рядов колонн) направления и в виде перекрестных лент (рис. 4.25). Ленточные фундаменты могут быть сборными и монолитными. Они имеют тавровое поперечное сечение с полкой понизу. При грунтах высокой связности иногда применяют тавровый профиль с полкой поверху. При этом уменьшается объем земляных работ и опалубки, но усложняется механизированная выемка грунта.

Выступы полки тавра работают как консоли, защемленные в ребре. Полку назначают такой толщины, чтобы при расчете на поперечную силу в ней не требовалось армирования поперечными стержнями или отгибами. При малых вылетах полку принимают постоянной высоты; при больших – переменной с утолщением к ребру.

Отдельная фундаментная лента работает в продольном направлении на изгиб как балка, находящаяся под воздействием сосредоточенных нагрузок от колонн сверху и распределенного реактивного давления грунта снизу. Ребра армируют подобно многопролетным балкам. Продольную рабочую арматуру назначают расчетом по нормальным сечениям на действие изгибающих моментов; поперечные стержни (хомуты) и отгибы – расчетом по наклонным сечениям на действие поперечных сил.

Сплошные фундаменты

Сплошные фундаменты бывают: плитными безбалочными; плит-но-балочными и коробчатыми (рис. 4.26). Наибольшей жесткостью обладают коробчатые фундаменты. Сплошными фундаменты делают при особенно больших и неравномерно распределенных нагрузках. Конфигурацию и размеры сплошного фундамента в плане устанавливают так, чтобы равнодействующая основных нагрузок от сооружения проходила в центре подошвы

В зданиях и сооружениях большой протяженности сплошные фундаменты (кроме торцовых участков небольшой длины) приближенно могут рассматриваться как самостоятельные полосы (ленты) определенной ширины, лежащие на деформируемом основании. Сплошные плитные фундаменты многоэтажных зданий загружены значительными сосредоточенными силами и моментами в местах описания диафрагм жесткости. Это должно учитываться при их проектировании.

Безбалочные фундаментные плиты армируют сварными сетками. Сетки принимают с рабочей арматурой в одном направлении; их укладывают друг на друга не более чем в четыре слоя, соединяя без нахлестки – в нерабочем направлении и внахлестку без сварки – в рабочем направлении. Верхние сетки укладывают на каркасы подставки.

 

Основные сведения о грунтах оснований нефтегазовых сооружений

 

Грунты – это любые горные породы, как рыхлые, так и монолитные, залегающие в пределах зоны выветривания (включая почвы) и являющиеся объектом инженерно-строительной деятельности человека.

Наиболее часто в качестве оснований используются несцементированные, сыпучие и глинистые грунты, реже, так как реже выходят на поверхность, – скальные грунты. Классификация грунтов в строительстве принимается в соответствии с ГОСТ 25100–95 «Грунты. Классификация» [15].

Знание строительной классификации грунтов требуется для оценки их свойств как оснований под фундаменты зданий и сооружений. Грунты делятся на классы по общему характеру структурных связей. Различают: класс природных скальных грунтов, класс природных дисперсных грунтов, класс природных мерзлых грунтов, класс техногенных грунтов.

Скальные грунты состоят из магматических, метаморфических и осадочных пород, обладающих структурным сцеплением, высокой прочностью и плотностью.

К магматическим относятся граниты, диориты, кварцевые порфиры, габбро, диабазы, пироксениты и т.д.; к метаморфическим – гнейсы, сланцы, кварциты, мраморы, риолиты и т.д.; к осадочным – песчаники, конгломераты, брекчии, известняки, доломиты. Все скальные грунты обладают очень высокой прочностью, структурными жесткими связями и позволяют возводить на них практически любые нефтегазовые объекты.

К рыхлым грунтам, называемым в ГОСТ 25100–95 [15] дисперсными, относятся грунты, состоящие из отдельных элементов, образовавшихся в процессе выветривания скальных грунтов. Перенос отдельных частиц рыхлого грунта водными потоками, ветром, оползанием под действием собственного веса и т.п. приводит к образованию больших массивов рыхлых грунтов. Связи между отдельными частицами слабые. Рыхлые или дисперсные грунты не всегда обладают достаточной несущей

способностью, поэтому размещение на таких грунтах сооружений должно быть обоснованным. Требуется тщательное исследование свойств грунта в естественном состоянии, а также их изменение под воздействием нагрузки от сооружений.

Одной из основных характеристик рыхлых грунтов является размер отдельных частиц и их связанность друг с другом. В зависимости от размеров отдельных частиц грунты подразделяют на крупнообломочные, песчаные и глинистые. Крупнообломочные грунты содержат более 50% по массе частиц крупностью более 2 мм; песчаные сыпучие грунты в сухом состоянии содержат менее 50% по массе частиц крупностью более 2 мм; глинистые грунты обладают способностью существенно изменять свойства в зависимости от насыщенности водой.

По крупности отдельных частиц глинистые и песчаные грунты подразделяются на более дифференцированные виды: суглинки, пылеватые суглинки, супеси.

 

Определение размеров подошвы фундаментов, выполняемых на дисперсных грунтах

 

Как уже отмечалось, для фундаментов на дисперсных грунтах нормальным считается, когда осадка фундамента не превышает предельной величины, при этом давление на грунт под подошвой фундамента обычно не превышает расчетного сопротивления грунта R (см. § 4.1.4.2).

От размеров подошвы фундамента зависит его осадка (деформация). Расчет по деформациям относится ко второй группе предельных состояний, и, соответственно, расчеты размеров подошвы фундамента следует вести по нагрузкам, принятым для расчета второй группы предельных состояний, – iVser (сервисная нагрузка). Сервисная нагрузка принимается равной нормативной нагрузке или определяется приближенно через расчетную нагрузку, деленную на 1,2 – средний коэффициент надежности по нагрузкам:

 

Nser = Nn или Nser = N/1,2.

 

Нагрузка Nser собирается до верхнего обреза фундамента, поэтому при определении размеров подошвы фундамента необходимо учитывать и нагрузку от его собственного веса и веса грунта, находящегося на уступах фундамента Nf так как они также оказывают дополнительное давление на грунт. Нагрузку Nf можно примерно определить как произведение объема, занятого фундаментом и грунтом, находящимся на его обрезах, V = Afd1, на средний удельный вес бетона и грунта ут = 20 кН/м3 (рис. 4.35); Af – площадь подошвы фундамента.

Давление под подошвой фундамента определяется по формуле

 

P=N +N/A = (4.32)

 

Приравняв давление под подошвой фундамента расчетному сопротивлению грунта p = R, можно вывести формулу для определения требуемой площади подошвы фундамента (4.33)

Для проверки достаточности площади существующих или запроектированных фундаментов пользуются формулой

При горизонтальном залегании пластов грунта (однородный, равномерно и не сильно сжимаемый грунт) для зданий и фундаментов обычной конструкции можно считать, что подобранные таким способом размеры подошвы фундамента (по формуле (4.33)) (или проверенный существующий фундамент (по формуле (4.34)) удовлетворяют требованиям расчета по деформациям (4.34) и расчет осадок фундамента можно не производить. (Более подробно см. п. 2.56 СНиП 2.02.01–83*) [57].

Расчет площади подошвы фундамента выполняют обычно в следующей последовательности.

Установив по таблицам (см. табл. 4.6, 4.7) величину расчетного сопротивления грунта Rq, определяем приближенное значение площади подошвы фундамента по формуле (4.35)

затем назначаем размеры подошвы фундамента и, определив механические характеристики грунтов (удельное сцепление сп и угол внутреннего трения фп (см. табл. 4.4, 4,5), определяем уточненное значение расчетного сопротивления грунта R по формуле (4.14), по которому, в свою очередь, уточняем требуемые размеры подошвы фундамента по формуле (4.33), и окончательно принимаем подошву фундамента.

До расчета армирования необходимо убедиться в том, что габариты фундамента не пересекаются с гранями пирамиды продавливания. Для определения сечения арматуры сетки нижней ступени вычисляют изгибающие моменты в каждой ступени (рис. 4.36).

Изгибающий момент в сечении I–I равен

 

МI = 0,125/pгр(l-lk)2b, (4.36)

 

а необходимая площадь сечения арматуры

 

А = MI /0,9Rsh0. (4.37)

 

Для сечения II–II соответственно

 

МII = 0,125ргр(1-l1)2b; (4.38)

AsII = MII /0,9Rs(h0-hI). (4.39)

 

Выбор арматуры осуществляется по максимальному значению Asi, где i= 1–3.

Фундаменты армируют по подошве сварными сетками из стержней периодического профиля. Диаметр стержней должен быть не менее 10 мм, а их шаг – не более 200 и не менее 100 мм.

 

Расчет фундаментов под крайние колонны

 

При совместном действии вертикальных и горизонтальных сил и моментов, т.е. при внецентренном нагружении, фундаменты проектируют прямоугольниками в плане, вытянутыми – в плоскости действия момента.

Размеры фундамента в плане должны быть назначены так, чтобы наибольшее давление на грунт у края подошвы от расчетных нагрузок не превышало l, 2R. Предварительно размеры могут быть определены по формуле (4.35), как для центрально-нагруженного фундамента.

Максимальное и минимальное давление под краем фундамента вычисляют по формулам внецентренного сжатия для наименее выгодного загружения фундамента при действии основного сочетания расчетных нагрузок.

Для схемы нагрузок, показанной на рис. 4.34, 4.35:

 

N = N+GCT + ymdIAf, (4.41)

 

где M, N, Q – расчетный изгибающий момент, продольная и поперечная силы в сечении колонны на уровне верха фундамента соответственно; GCT – расчетная нагрузка от веса стены и фундаментной балки. Для фундаментов колонн здания, оборудованных мостовыми кранами грузоподъемностью Q > 750 кН, а также для фундаментов колонн открытых крановых эстакад рекомендуется принимать трапециевидную эпюру напряжений под подошвой фундамента с отношением > 0,25, а для фундаментов колонн здания, оборудованных кранами грузоподъемностью Q < 750 кН, необходимо выполнить условиеpmin > 0; в зданиях без кранов в исключительных случаях допускается эпюра (рис. 4.37). В этом случае е0 > 1/6.

Желательно, чтобы от постоянных, длительных и кратковременных нагрузок давление, по возможности, было равномерно распределено по подошве.


Поделиться с друзьями:

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.043 с.