Глава 9. Дифференциальные уравнения первого порядка — КиберПедия 

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Глава 9. Дифференциальные уравнения первого порядка

2017-08-11 245
Глава 9. Дифференциальные уравнения первого порядка 0.00 из 5.00 0 оценок
Заказать работу

Основные понятия

Базовые определения

Определение 1. Уравнение вида

 

 

где х — независимая переменная, у и у' — соответственно не­известная функция и ее производная, называется дифференци­альным уравнением первого порядка.

Примеры дифференциальных уравнений первого порядка:

 

 

В случае когда из уравнения можно выразить у', оно имеет вид

 

 

Уравнение (9.1) называется уравнением первого порядка, раз­решенным относительно производной. В дальнейшем будем рассматривать уравнения первого порядка именно такого ви­да. Примеры уравнений, разрешенных относительно производ­ной:

 

 

Приведем примеры уравнений, которые можно разрешить относительно производной неизвестной функции у'.

Пример 1. (y')2 = x 2 + у 2, откуда получаем два уравнения первого порядка у' = ± .

 

Определение 2. Решением дифференциального уравнения первого порядка называется функция у = φ(x), определенная на некотором интервале (а, b), которая при подстановке в урав­нение обращает его в тождество.

Например, функция у = х 2 тождественно обращает в нуль левую часть уравнения ху' — 2 х 2 = 0 и потому представляет собой решение этого уравнения.

В теории дифференциальных уравнений основной задачей является вопрос о существовании и единственности решения. Ответ на него дает теорема Коши, которую мы приводим без доказательства.

ТЕОРЕМА 1. Пусть дано дифференциальное уравнение (9.1). Если функция f(x,y) и ее частная производная f'y(x,y) непре­рывны в некоторой области D плоскости Оху, то в неко­торой окрестности любой внутренней точки (x0, у0) этой области существует единственное решение уравнения (9.1), удовлетворяющее условию у = у0 при х = x0.

 

График решения дифференциального уравнения называет­ся интегральной кривой. В области D содержится бесконечно много интегральных кривых. Теорема Коши гарантирует, что при соблюдении определенных условий через каждую внутрен­нюю точку области D проходит только одна интегральная кри­вая. Условия, которые задают значение функции у 0 в фиксиро­ванной точке x 0, называют начальными условиями (условиями Коши) и записывают в такой форме:

 

 

Задача нахождения решения уравнения (9.1), удовлетворя­ющего условию (9.2), называется задачей Коши — из множес­тва интегральных кривых выделяется та, которая проходит через заданную точку (x 0, y 0) области D.

В ряде случаев, когда условия теоремы Коши не выполне­ны, через некоторые точки плоскости Оху либо не проходит ни одной интегральной кривой, либо проходит более одной ин­тегральной кривой; эти точки называются особыми точками данного дифференциального уравнения.

Определение 3. Общим решением уравнения (9.1) называет­ся функция у = φ(x, С), удовлетворяющая этому уравнению при произвольном значении постоянной С.

Определение 4. Частным решением уравнения (9.1) в облас­ти D называется функция у = φ(х,С 0 ), полученная при опре­деленном значении постоянной С = С 0.

Общее решение у = φ (x, С) описывает семейство интег­ральных кривых на плоскости Оху. Условия Коши (9.2) фик­сируют произвольную постоянную С и позволяют выбрать из семейства интегральных кривых уравнения (9.1) одну интег­ральную кривую у = φ(x,C 0 ), проходящую через заданную точку (x 0, y 0).

Например, рассмотрим уравнение у' = 2 х. Правая часть этого уравнения удовлетворяет условиям теоремы Коши во всех точках плоскости Оху (функции f (x, у) = 2 х и f'y(x, у) 0 определены и непрерывны на всей плоскости Оху). Нетруд­но видеть, что общим решением уравнения является функция у = х 2 + С, где С — произвольная постоянная, описывающая семейство парабол (рис. 9.1). Для отыскания частного решения зададим произвольные начальные условия (9.2) и подставим их в формулу общего решения; получаем, что С = у 0 — x 02, откуда находим частное решение у = х 2 + у 0 – х 02. Это частное решение выделяет из семейства парабол одну, проходящую через точку 0, у 0 ).

 


Поделиться с друзьями:

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.