Тепловые процессы и аппараты — КиберПедия 

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Тепловые процессы и аппараты

2017-07-01 506
Тепловые процессы и аппараты 0.00 из 5.00 0 оценок
Заказать работу

Общая характеристика тепловых процессов

 

 

Технологические процессы, скорость протекания которых определяется скоростью подвода или отвода тепла, называют тепловыми, а аппараты, предназначенные для проведения этих процессов – теплообменными.

К тепловым процессам относятся: нагревание, охлаждение, конденсация, испарение и частный случай испарения – выпаривание.

В тепловых процессах взаимодействуют не менее чем две среды с различными температурами; при этом тепло передается самопроизвольно (без затраты энергии) только от среды с более высокой температурой (называемой теплоносителем) к среде с более низкой температурой (наз. хладоагентом или холодильным агентом). Часто оба тела, участвующие в теплообмене, называют просто теплоносителями, соответственно горячий и холодный теплоноситель.

Одним из важнейших и экономических факторов большинства химических производств является температура. Поддержание в аппаратах требуемой температуры почти всегда сопряжено с необходимостью подвода или отвода тепла – с целью нагревания или охлаждения обрабатываемых веществ.

Нагревание – повышение температуры перерабатываемых материалов путем подвода к ним тепла.

Охлаждение – понижение температуры перерабатываемых материалов путем отвода от них тепла.

Конденсация – сжижение паров какого-либо вещества путем отвода от них тепла.

Испарение – перевод в парообразное состояние какой-либо жидкости путем подвода к ней тепла.

Перенос тепла возможен тремя способами: теплопроводностью, конвекцией и излучением. Каждый из этих способов омет свой закономерности, составляющие предмет теории теплопередачи.

Теплопроводностью называют процесс распространения тепла между частицами тела, находящимися в соприкосновении и имеющими различные температуры. При этом тепловая энергия передается внутри тела от одних частичек к другим вследствие их колебательного движения, их перемещения не происходит. Процесс теплопроводности наблюдается в твердых телах и в тонких слоях жидкостей и газов.

Конвекцией называют процесс переноса тепла вследствие движения или перемешивания макроскопических объемов газа или жидкости.

Тепловым излучением или лучистым теплообменом называется процесс переноса тепла в виде электромагнитных волн, сопровождающийся превращением тепловой энергии в лучистую и обратно из лучистой в тепловую. Этот вид теплообмена возможен между телами любого агрегатного состояния как удаленными друг от друга, так и соприкасающимися.

На практике перечисленные способы теплообмена редко встречаются в обособленном виде. Чаще всего приходится иметь дело с сочетанием двух или даже всех трех способов при их последовательном или одновременном действии, т. е. происходит сложный теплообмен.

Условимся в дальнейшем различать два случая теплообмена: теплоотдачу и теплопередачу.

Теплоотдачей называют процесс теплообмена между твердым телом (напр. стенкой аппарата) и соприкасающейся с ней жидкостью или газом.

Теплопередачей наз. теплообмен м/у средами (жидкостями, газами, м/у жидкостью и газом) через разделяющую стенку.

Количество тепла, передаваемого от горячего теплоносителя к холодному в единицу времени наз. тепловой нагрузкой или тепловым потоком Q.

Количество тепла, передаваемого в единицу времени через единицу поверхности от одного тела к другому, наз. удельным тепловым потоком или плотностью теплового потока.

; .

Основная характеристика любого теплового процесса – количество передаваемого тепла: от этой величины зависят размеры теплообменных аппаратов. Основным размером теплообменного аппарата является теплопередающая поверхность (поверхность теплообмена).

Расчет теплообменной аппаратуры сводится к:

1. определение теплового потока путем составления и решения тепловых балансов.

2. определение поверхности теплообмена F аппарата, обеспечивающей передачу требуемого количества тепла в заданное время. F находят из основного уравнения теплопередачи.

 

Тепловой баланс

Основные понятия

Температура – это степень нагретости тела. Существует несколько температурных шкал: фаренгейта, Реомюра, Цельсия и Кельвина.

Кипение воды – 212 0F, 80 0R, 100 0С, 373 0К

Таяние льда – 32 0F, 0 0R, 0 0С, 273 0К (- 273 0С, 0 0К)

Температура в 0С – t, в 0К – T

T = (273 + t) 0К.

Разность температур выражается в К.

t1 = 20 0C; t2 = 2 0C; ∆t = 20 – 2 = 18 К.

Теплоемкость – это количество тепла, которое необходимо подвести к 1 кг или 1 кмолю или 1 м3 вещества для нагревания его на 1 0С или 1 К.

В основном пользуются удельной теплоемкостью С.

 

.

Теплота физических превращений – (т. е. теплота испарения и конденсации), это количество тепла, которое выдерживается или поглощается 1 кг или 1 кмолем или 1 м3 вещества при изменении агрегатного состояния при данной температуре или данном давлении.


r – удельная теплота парообразования, конденсации или конденсации

 

Теплосодержание (энтальпия) – это количество тепла, которое содержит в себе 1 кг, 1 кмоль или 1 м3 вещества при данной температуре или данном давлении.

 

 

; c, r, i – величины справочные.

При теплообмене происходит уменьшение энтальпии горячего теплоносителя и увеличение энтальпии холодного теплоносителя.

I. Внешний метод составления теплового баланса

G, g – соот-но количества горячего и хол. т/нос.

I1, i1 – начальная энтальпии гор. и хол.

I2, i2 – конечные энтальпии гор. и хол.

Согласно закона сохранения энергии

- приход тепла = расходу.

или можно записать

- количество тепла отданного гор. т/нос-ем.

- количество тепла, сообщенного хол. теплоносителю.

Без учета потерь

 

Внутренний метод составления теплового баланса энтальпию представляет через

Можно выделить 2 случая при составлении теплового баланса.

§ нагревание, охлаждение (т. е. без изменения агрегатного состояния вещества).

§ конденсация, испарение – т. е. с изменением агрегатного состояния вещества.

 

1. без изменения агрегатного состояния вещества

 
 
Отметить: Горячий т/носитель – с индексом «1», холодный, тот, что принимает – с инд. «2»

 


Q = Q1 = Q2.

G1, G2 – количество сред, кг/с

tн, tн2, tк, tк2 – температуры сред, 0С.

С1, С2 – уд. теплоемкости сред, определяют при Q1 = G1(I1 – I2) = G1C1(tн1 – tк1) и Q2 = G2(i2 – i1) = G2C2(tк2 – tн2).

Таким образом, при нагревании и охлаждении тепловую нагрузку считают

2. при изменении агрегатного состояния – особенностью таких процессов теплообмена заключается в том, что тепло подводится к материалам или отводится от них при постоянной температуре (т. к. процессы конденсации, испарения, плавления или кристаллизации протекают при постоянной температуре).

 

D – количество пара, кг/с

I, i – теплосодержание пара и конденсата, Дж/кг

 

 

Q = Dr
Величины I, iконд, r находят по табл. 56 и 57 П. Р. по t или Pпара (абсолютному).

Вывод:

 

 


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.021 с.