Измерение сопротивлений при помощи мостовой схемы — КиберПедия 

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Измерение сопротивлений при помощи мостовой схемы

2017-07-01 635
Измерение сопротивлений при помощи мостовой схемы 0.00 из 5.00 0 оценок
Заказать работу

Одним из наиболее точных методов измерения сопротивлений является мостовой метод, при котором неизвестное измеряемое сопротивление сравнивают с тремя известными. На рис. I показана схема моста постоянного тока. Четыре сопротивления: R1, R2, R3 и RХ соединены в замкнутый четырехугольник, стороны которого образуют плечи моста. В одну из диагоналей моста включают источник тока, в другую - магнитоэлектрический индикатор высокой чувствительности. Если в цепи прибора тока нет, мост считается уравновешенным. Это может быть только при равенстве потенциалов

равновешивают мост, подбирая сопротивления R2 или R3. В уравновешенном мосте произведения сопротивлений противоположных плеч равны: R1×R3 =R2 ×RХ .

Докажем это соотношение, пользуясь вторым правилом Кирхгофа. Для замкнутых контуров ACDA и CBDC можно записать следующие уравнения (при условии равновесия моста):

I1 R1-I2 R х=0 и I1 R2 - I2R3=0.

 

Решая эту систему уравнений, получим:

 

Rх= R1 (R3/R2)

 

Из этого соотношения видно, что равновесие моста может быть получено двумя способами: при постоянном отношении постоянных сопротивлений R3/R2 изменением сопротивления R1, или при постоянном сопротивлении одного плеча R1 изменением соотношения сопротивлений двух других плеч R3/R2 .

В зависимости от способа получения равновесия моста существуют различные его конструкции. На рис. 2 показана мостовая схема, в которой

равновесие моста достигает­ся вторым способом. Эта схема называется мостом Уитстона.

Таким образом, процесс измерения сопротивления с помощью моста Уитстона сводится к балансировке моста и измерению длин плеч l 1 и l 2потенциометра RП. Последнее может осуществляться с помощью линейки или шкалы, смонтированной на потенциометре.

Точность измерения сопротивлений определяется точностью уравновешенности моста, которая существенно зависит от чувствительности индикатора и величины напряжения питания.

Мостовые схемы образуют обширный класс измерительных цепей, широко используемый в радиотехнике, автоматике и других областях техники.

 

В настоящее время существует огромное количество разновидностей электроприводов. Их можно в первом преближении разделить на группы по следующим основным признакам.

Классификация электроприводов по характеру движения:

· поступательного и вращательного движения;

· регулируемые и нерегулируемые;

· непрерывного и дискретного действия;

· однонаправленные и двунаправленные (реверсивные);

· вибрационные (реализующие возвратно-поступательное движение).

Классификация электроприводов по числу используемых электродвигателей:

· групповые электроприводы;

· индивидуальные;

· взаимосвязанные электроприводы.

Групповой электропривод содержит один электродвигатель, приводящий в движение несколько исполнительных механизмов одной рабочей машины или один исполнительный механизм нескольких рабочих машин. Индивидуальный электропривод содержит один электродвигатель, приводящий в движение один исполнительный механизм рабочей машины.

Взаимосвязанный электропривод содержит два и более электродвигателей, приводящих в движение один и более исполнительных механизмов. При этом, если электродвигатели связаны между собой механически (работают на 1 вал), то электропривод называют многодвигательным. Если же электродвигатели связаны только электрическими цепями, то электропривод называют электрическим валом.

Классификация электроприводов по виду электрического силового преобразователя:

· управляемые и неуправляемые;

· с выпрямителем или инвертором;

· с преобразованием напряжения или частоты;

· со звеном постоянного или переменного тока, или их совокупностью.

Также весьма разнообразна элементная база силовых преобразователей: электромашинные системы, магнитные усилители, ионные и полупроводниковые элементы. Благодаря вышеотмеченномы рознообразию видов электропривода, он получил широкое применение во всех сферах человеческого общества, начиная от промышленного производства и до бытовых сфер. Этим и определяется исключительно большой диапазон мощностей электроприводов — от долей Вт до десятков МВт. Такие электроприводы применяются в газо- и нефтеперекачивающих станциях, прокатных станах, конвейерах, металлорежущих станках и т.д. В основном, предпочтение в таких случаях отдается индивидуальному автоматизированному электроприводу.

Преобразовательные устройства таких электроприводов выполняются на базе генераторов постоянного тока, полупроводниковых преобразователей напряжения и частоты, позволяя обеспечить широкие возможности регулирования потока электрической энергии, поступающей в электродвигатели.

Управляющие устройства электропривода построены в основном на микроэлектронной базе, а иногда включают в себя и управляющую вычислительную машину. Такая же база применяется в робототехнике, манипуляторах, станках с ЧПУ и т.д..

Электроприводом (ЭП) называется электромеханическая си­стема, состоящая из электродвигательного, преобразовательного, передаточного и управляющего устройств и предназначенная для приведения в движение рабочих органов машин и управления этим движением (по ГОСТ 16593-79).

Электроприводы подразделяются на групповые, индивиду­альные и взаимосвязанные.

В групповом приводе один электродвигатель приводит в дви­жение с помощью разветвленной передачи группу механизмов или рабочих органов одного механизма. Кинематическая схема такого привода громоздкая, а сам привод неэкономичен, поэто­му находит ограниченное применение.

В индивидуальном приводе электродвигатель приводит в дви­жение только один рабочий орган. Кинематическая схема меха­низма с таким приводом существенно упрощается, повышается экономичность и снижается металлоемкость механизма. Элек­тродвигатель может встраиваться непосредственно в механизм.

Взаимосвязанный привод обеспечивает работу одного меха­низма с помощью нескольких электродвигателей.

 

 

Устройство и принцип действия. Магнитоэлектрический измерительный механизм (рис. 321,а) выполнен в виде постоянного магнита 1, снабженного полюсными наконечниками 2, между которыми укреплен стальной сердечник 3. В кольцеобразном воздушном зазоре, образованном полюсными наконечниками и сердечником, помещена подвижная катушка 5, намотанная на алюминиевый каркас 6 (рис. 321,б). Катушка выполнена из очень тонкого провода и укреплена на оси, связанной со стрелкой спиральными пружинами 4 или растяжками. Через эти же пружины или растяжки осуществляется подвод тока к катушке.

При прохождении тока I по катушке на каждый из ее проводников будет действовать электромагнитная сила. Суммарное действие всех электромагнитных сил создает вращающий момент М, стремящийся повернуть катушку и связанную с ней стрелку прибора на некоторый угол α. Так как индукция В магнитного поля, создаваемого постоянным магнитом

Повороту подвижной части измерительного механизма препятствует противодействующий момент Мпр, создаваемый спиральными пружинами или растяжками. Этот момент пропорционален углу закручивания, т. е. углу поворота α подвижной части

 

Для измерения силы тока в электрических цепях служат ампер­метры, миллиамперметры и микроамперметры различных систем. Их включают в цепь последовательно, и через прибор проходит весь ток, протекающий в цепи.

При различных электрических измерениях весьма важно, чтобы измерительный прибор как можно меньше изменял электрический режим цепи, в которую его включают. По этой причине амперметр должен обладать незначительным сопротивлением по сравнению с сопротивлением цепи. Пусть в электрическую цепь включен источ­ник электрической энергии, напряжение которого U = 10 в. Сопро­тивление потребителя rп=20 ом. В этой цепи, согласно закону Ома, ток

Допустим, что обмотка миллиамперметра, которым следует из­мерить ток, имеет сопротивление

rа=30 ом. Тогда при включении прибора в цепь в ней установится ток

Таким образом, если включить в цепь прибор с большим сопротив­лением, то нарушится ее электрический режим и сила тока будет измерена с ошибкой на 0,3 а.

Этот пример подтверждает, что желательно измерять силу тока в цепи таким прибором, у которого собственное сопротивление наи­меньшее. Присоединять амперметр к полюсам источника тока без нагрузки нельзя. Это объясняется тем, что по обмотке амперметра, имеющей малое сопротивление, в данном случае пройдет большой ток и она может перегореть. По той же причине нельзя включать амперметр параллельно нагрузке. По обмотке и отдельным элемен­там электроизмерительных приборов некоторых систем во избежа­ние возможности их порчи нельзя пропустить сколько-нибудь зна­чительный ток. В частности, это относится к спиральным пружинам и подвижной катушке магнитоэлектрического прибора.

Если такой измерительный прибор нужно при­способить для измерения значительной силы то­ка — расширить пределы измерения амперметра, та он снабжается шунтом.

Шунт — это относительно малое, но точно из­вестное сопротивление (rш), присоединяемое параллельно измерительному механизму. Схема включения амперметра с шунтом показана на рис. 84. При таком включении шунта из n частей тока, протекающего в цепи, через прибор прохо­дит лишь одна его часть, а через шунт — остальные n-1 частей.

Это происходит потому, что сопротивление шунта меньше сопротивления амперметра n - 1 раз. Число n показыва­ет, во сколько раз нужно увеличить предел измерения амперметра. Таким образом, шунт служит для расширения пределов измерения прибора.

Пусть амперметр позволяет измерять силу тока Iа = 5 а, а в данном случае необходимо этим прибором измерить силу тока I=30 а. Значит, нужно увеличить предел измерения прибора в

раз. Сопротивление шунта, который надо присоединить параллельно амперметру, чтобы обеспечить такое расшире­ние предела измерения, можно определить по формуле:

Если сопротивление амперметра rа = 0,15 ом, то сопротивление шунта

После присоединения шунта к прибору каждое деление шкалы прибора будет соответствовать величине, в n раз большей, чем ука­зана на ней. В нашем случае, если стрелка прибора с шунтом установится на делении 5, это значит, что в цепи протекает ток I=5xn = = 5x6= 30 а.

Шунт должен иметь четыре зажима, это необходимо для устра­нения влияния на сопротивление шунта переходных сопротивлений контактов. Шунты изготовляют из манганина — сплава, у которого температурный коэффициент сопротивления практически равен нулю.

 

 

ВОЛЬТМЕТРА

Для измерения напряжения служат вольтметры, милливольт­метры и микровольтметры различных систем. Эти приборы включа­ют параллельно нагрузке, а потому сопротивление их должно быть как можно больше. В связи с этим уменьшается достоверность про изведенного измерения.

Для расширения пределов измерения вольт­метра к обмотке измерительного механизма последовательно присоединяют многоомное сопротивление, носящее название добавочного сопротивления (rд). Схема включения вольт­метра с добавочным сопротивлением приведена на рис. 85.

При такой схеме из n частей напряжения, подлежащего измерению, на обмотку прибора приходится лишь одна часть, а остальные n-1 частей – на добавочное сопротивление. Это происходит пото­му, что сопротивление rд берется больше сопротивления вольтметра в n —1 раз, а при последовательном соединении напряжение рас­пределяется пропорционально величине сопротивления.

Добавочное сопротивление


Поделиться с друзьями:

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.019 с.