Рассеяние размеров, связанное с погрешностью настройки. — КиберПедия 

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Рассеяние размеров, связанное с погрешностью настройки.

2017-06-20 434
Рассеяние размеров, связанное с погрешностью настройки. 0.00 из 5.00 0 оценок
Заказать работу

РАЗМЕР ПРОГРАММНОГО ЗАДАНИЯ

Размер программного задания зависит от установленного объема выпуска изделий, т. е. от количества изделий определенных наименования, типоразмера и исполнения, изготовляемых или ремонтируемых объединением или его подразделением в течение планируемого интервала времени. Стандарт также определяет тип предполагаемого производства и дает возможность установить целесообразный вид технологического процесса с проведением необходимых расчетов экономической эффективности вариантов технологической оснастки и специального оборудования. В условиях массового и серийного производств размер программного задания служит основой для установления такта или ритма выпуска продукции, обеспечивающего выполнение производственной программы в заданный срок.

Такт выпуска Т (мин/шт.) представляет собой интервал времени, через который периодически производится выпуск изделий или заготовок определенных наименования, типоразмера и испол­нения (ГОСТ 3.1109—82), т. е. Т = F/Q,где F — годовой фонд времени станка (линии) с учетом простоев по причинам сменности, выходных дней, ремонта и т. п., мин; Q — размер годового задания, шт.

Ритм выпуска — количество изделий или заготовок определенных наименования, типоразмера и исполнения, выпускаемых в единицу времени. Из определения следует, что ритм выпуска представляет собой обратную величину такта.

Цикл технологической операции — это интервал календарного времени от начала до конца периодически повторяющейся технологической операции независимо от числа одновременно изготовляемых изделий

ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ЗАЖИМНЫМ УСТРОЙСТВАМ

1. Надежность работы. Простота конструкции. Удобство, простота и безопасность в обслуживании. Высокая износостойкость.

2. ЗУ не должны вызывать деформации закрепляемых заготовок и порчи их поверхности.

3. Закрепление и открепление заготовок должно производиться с минимальной затратой сил и времени рабочего.

4. Силы резания должны по возможности восприниматься не ЗУ, а более жесткими УЭ приспособлений. Усилия зажима должны направляться нормально к установочным поверхностям и как можно ближе к обрабатываемым поверхностям.

5. ЗУ должны обеспечивать равномерность зажима, особенно при закреплении нескольких заготовок в многоместных приспособлениях. Они не должны сдвигать заготовку в процессе ее закрепления.

МЕТОДИКА РАСЧЕТА СИЛ ЗАЖИМА

Расчет сил зажима производится в двух основных случаях. Первый случай характерен при конструировании новых приспособлений, второй имеет место при использовании имеющихся приспособлений с ЗУ, развивающими опреде­ленную силу.

В первом, наиболее общем, случае надо знать:

а) условия проектируемой обработки;

б) величину, направление и место приложения сил, сдвигающих заготовку;

в) схему ее установки и закрепления.

К обрабатываемой заготовке приложены силы, возникающие в процессе обработки, искомые зажимные силы и реакции опор. Под действием этих сил заготовка должна находиться в равновесии. При расчетах следует принимать наибольшие силы зажима.

Во втором, более частном, случае расчет зажимной силы носит проверочный характер. Найденная из условий обработки необходимая зажимная сила должна быть меньше или быть равна той силе, которую развивает ЗУ используемого приспособления.

Расчет усилия зажима может быть сведен к решению задачи статистики на равновесие заготовки под действием системы внешних сил и моментов, возникающих при ее обработке. В общем виде необходимо решить четыре уравнения:

; ; ; .

В каждом частном случае количество уравнений может быть уменьшено.

Величина составляющих силы резания и их моментов определяется по известным формулам теории резания материалов или выбирается по нормативным справочникам.

Так как на самом деле при обработке заготовок в приспособлениях действуют законы динамики, то в расчеты по определению необходимых сил закрепле­ния заготовок вводится коэффициент запаса K.

Он учитывает неоднородность обрабатываемых заготовок, затупление режущего инструмента и связанное с ним увеличение силы резания, а также непостоянство установки и закрепления заготовок. Применение в расчетах среднего значения K неправильно. При малых значениях K надежность ЗУ недостаточна. При больших значениях K получают увеличение силы зажима, что влечет за собой увеличение размеров зажимных устройств, металлоемкость и пр., а следовательно, ведет к увеличению стоимости приспособления в целом.

В зависимости от конкретных условий построения технологических операций значение K следует выбирать дифференцированно. Величину K можно представить как произведение первичных коэффициентов:

K = K0 ' K1 ' K2 ' K3 ' K4 ' K5 ' K6,

где K0 — гарантированный коэффициент запаса, для большинства случаев рекомендуется брать равным 1,3-1,5; K1 — коэффициент, учитывающий неравномерность величины припуска, при черновой обработке К1 = 1,2, а при чистовой К1 = 0; К2 — коэффициент, учитывающий увеличение силы резания от прогрессирующего затупления режущего инструмента (К2 = 1,0-1,9); К3 — коэффициент, учитывающий увеличение силы резания при прерывистом резании, при точении и торцовом фрезеровании K3 достигает величины 1,2; K4 — коэффициент, учитывающий нестабильность закрепления ЗУ, при ручном приводе К4 = 1,3, при мембранных ЗУ К4 = 1,2, при применении пневмо- или гидравлических ЗУ К4 = 1,0 5 — коэффициент, учитывающий удобство расположения рукояток в ЗУ. При удобном расположении рукояток и малом диапазоне угла их поворота K5 = 1,0, а при большом диапазоне угла поворота (более 90°) K5 = 1,2; K6 — коэффициент, учитывающий наличие моментов, стремящихся повернуть заготовку. Если заготовка установлена базовой плоскостью на опо­ры с ограниченной поверхностью контакта, K6 = 1,0. Если заготовка установлена на планки или другие элементы с большой поверхностью контакта, K6 может достигать величины 1,5.


 

В37.Особенности автоматизации в машиностроении.

Современное состояние и ближайшие перспективы автоматизации в машиностроении связаны, прежде всего, с переходом от создания отдельных машин и агрегатов к разработке систем автоматических машин, охватывающих различные стадии производственного процесса – от заготовительных до сборочных, с оптимизацией технических решений. Центр тяжести разработок переносится с массового на серийное производство с широким развитием автоматизации и механизации вспомогательных процессов, причем автоматизации не только технологических операций, но и функций управления.

Комплексная автоматизация базируется на непрерывном совершенствовании технических средств (от простейших механизмов до сложных электронных систем; СПУ, электронных вычислительных и управляющих машин и др.); на широком использовании общности методов и

средств автоматизации на различных стадиях производственного процесса, на применении методов унификации.

Развитие автоматизации на современном этапе характерно смещение центра тяжести разработок с массового на серийное производство, составляющую основную часть машиностроительной отрасли (около 80% всей машиностроительной продукции выпускается на заводах серийного и единичного производства).

Другая характерная особенность современной автоматизации – расширение арсенала технических средств и, как следствие, многовариантность решения задач автоматизации производственных процессов.

Стратегия комплексной автоматизации машиностроительного производства как основа технической политики определяется рядом аспектов, в том числе:

1) правильным пониманием содержания и основной направленности работ по автоматизации;

2) объективной оценкой во времени перспективности и целесообразности области применения новых методов и средств автоматизации, их состоянием и взаимосвязью с известными, традиционными.

Рассмотрим эти аспекты более подробно. Автоматизация производства часто трактуется как процесс замещения функций человека устройствами и системами управления и контроля, т.е. отождествляется с внедрением автоматики. При этом считается, что технологические процессы, конструкции и машин остаются в основном прежними. Это неверно. Содержание производства составляют технологические процессы, именно в них закладываются все потенциальные возможности качества и количества выпускаемой продукции, эффективности производства, а система управления есть лишь форма реализации этих возможностей. Поэтому автоматизация производства в машиностроении представляет собой комплексную конструкторско-технологическую задачу создания новой техники, таких высокоинтенсивных технологических процессов и высокопроизводственных средств производства, которые недоступны для непосредственного выполнения человеком.

Современный токарный автомат – это комплекс технологических и конструктивно-компоновочных решений, характеризуемый многопозиционностью, одновременным функционированием десятков, а в автоматических линиях – сотен механизмов и инструментов. Создание таких систем требует решения многих задач, в том числе автоматизации транспортирования и загрузки деталей, изменения их ориентации, накопления заделов, поворота и фиксации деталей, удаления отходов и т.д. И только при этих условиях может быть эффективным применение автоматического управления. Автоматически действующие средства производства только тогда перспективны, когда они выполняют производственные функции быстрее и лучше человека.

Сказанное не снижает значения «малой» автоматизации, т.е. оснащение неавтоматизированного оборудования механизмами загрузки и зажима деталей, устройствами для управления циклом и т.д., особенно когда такие средства являются типовыми. Однако к этой частности не сводится процесс автоматизации.

Чрезвычайную актуальность в автоматизации приобретает проблема правильной, объективной оценки и разумного внедрения новейших методов и средств автоматизации. Любое техническое новшество, сколь бы перспективным оно ни было, проходит ряд стадий: идея – опытная конструкция (способная лишь функционировать) – надежно работающая конструкция – экономически эффективная конструкция. Каждая стадия характеризуется совершенствованием параметров, которые можно свести к формуле «быстродействие – надежность – стоимость». И лишь когда эти параметры укладываются в технико-экономические допуски, данное новшество созревает для производственного внедрения. Поэтому в технической политике недопустимо как запаздывание с разработкой первичной идеи, так и реализация недостаточно созревших решений.

Один из принципиальных вопросов комплексной автоматизации – оптимальное сочетание новейших методов и средств с традиционными. В автоматических машинах и системах для массового производства широко используются принципы дифференциации и концентрации операций, совмещения их во времени, что составляет основу высокой производительности и эффективности. В подавляющем же большинстве современные станки с ЧПУ – одношпиндельные. Поэтому в условиях стабильной работы, без переналадок, производительность многошпиндельных агрегатных станков-полуавтоматов в десятки раз выше, чем многооперационных полуавтоматов, а стоимость ниже. В опытном производстве, где номенклатура изделий не повторяется, необходим широчайший диапазон переналадок технологического оборудования, который можно обеспечить лишь при использовании ЭВМ. В стабильном же производстве, с постоянной номенклатурой выпускаемой продукции, серийная обработка производится лишь потому, что масштабы выпуска не позволяют загрузить каждую единицу оборудования одними и теми же изделиями. Здесь участки из универсальных станков-полуавтоматов с ЧПУ или технологических комплексов с управлением от ЭВМ может заменить один переналаживаемый многошпиндельный агрегатный станок-полуавтомат, на котором несколько деталей обрабатываются одновременно десятками инструментов, производительность его несоразмерно выше, чем одноинструментальных станков, а переналадка значительно короче.

Поэтому выпуск одношпиндельных станков с ЧПУ с технологическими и компоновочными схемами, унаследованными от неавтоматизированного производства, следует считать правомерным лишь на ранних этапах их развития. Неизбежен массовый переход к использованию многошпиндельных и многопозиционных станков с ЧПУ, начиная с простейших, выполняющих параллельную обработку нескольких деталей по одной программе. Системы с распределительными валами, кулачками и копирами, по-видимому еще долго будут преобладающими при автоматизации управления в массовом производстве, несмотря на то, что в их конструкции мало электроники и нет адаптации. Системы с ЧП, прямого управления от ЭВМ и др. мобильны, и поэтому эффективны при автоматизации серийного, а будущем и единичного производства. Их значимость для массового производства не в замене сложившихся технических решений, а в их дополнении, в реализации невыполнимых ранее функций управления. Так, применение АСУ ТП с функциями технической и статистической диагностики работы автоматических линий должно стать основой высокопроизводительной эксплуатации линий, сокращения их простоев по техническим и организационным причинам.


В38.Механизация, автоматизация. Стадии автоматизации. Полуавтомат, автомат, ГПС, автоматическая линия.

Механизацией называется направление развития производства, при котором физический труд рабочего, связанный с выполнением производственного процесса или его составных частей, передается машине. Примерами механизации являются: использование патронов с пневматическим и гидравлическим приводом, вместо обычного винтового перемещения кулачков вручную с помощью ключа; перемещение пинолей задних бабок токарных станков, быстрый подвод суппорта или стола станка с помощью электро-, пневмо- или гидросуппортов. Механизация облегчает труд рабочего. При этом действия, направленные главным образом на управление производственным процессом, остаются за рабочим. Они включаются в цикл работы машины. Механизация может быть либо частичной, либо полной или, как ее называют, комплексной.

Частичная механизация - это механизация части движений, необходимых для осуществления производственного процесса: либо главного движения, либо вспомогательных и установочных движений, либо движений, связанных с перемещением изделий с одной позиции на другую.

Полная или комплексная механизация - механизация всех основных, вспомогательных, установочных и транспортных движений, которые выполняются по ходу производственного процесса. При комплексной механизации обслуживающий персонал осуществляет только оперативное управление производственным процессом, включение и выключение в нужные моменты требуемых механизмов и управление режимом и характером их работы.

Дальнейшее развитие механизации приводит к автоматизации производства. Т.е. автоматизация- это такое направление развития производства, при котором человек освобождается не только от тяжелого физического труда, но и от оперативного управления механизмами или машинами.

Различается частичная и комплексная автоматизация. Понятие «частичная автоматизация» связывается с осуществлением автоматизации только одного структурного компонента из числа всех систем. Например, автоматизация отдельных элементов общего цикла работы станков. Примеры этого вида автоматизации: оснащение станков загрузочными устройствами, автоматизация подвода и отвода суппорта, стола, хранение, а также уборка стружки и т.д., т.е. оснащение устройствами, частично автоматизирующими управление и обслуживание станков. Если же говорить в целом о технологическом процессе, то например, автоматизирована одна из десяти операций. Комплексная автоматизация характеризуется переводом обработки деталей, например, со станков общего назначения на автоматические линии, пролеты, цехи, а также автоматические

заводы. Для этого направления характерна непрерывность обработки, причем автоматизируются обработка деталей, их контроль, транспортирование, учет, хранение, а также уборка стружки и т. д.

Примером комплексно-автоматизированного производства может служить производство подшипников качения, где изготовление подшипников, начиная от заготовки и заканчивая контролем и упаковкой, выполняется комплексом автоматизированного оборудования.

При комплексной автоматизации кроме ранее перечисленных преимуществ, свойственных автоматизации вообще, обеспечивается возможность непрерывной работы в едином потоке. Отпадает потребность в промежуточных складах, сокращается длительность цикла производства, упрощается планирование производства и учет производимой продукции. Здесь наиболее полно и эффективно сочетаются два принципа - автоматизация и непрерывность производственного процесса. Комплексная автоматизация производства - радикальное и решающее средство повышение производительности труда и качества продукции, снижение ее себестоимости.

Степень автоматизации производственных процессов может быть различной. Различают три стадии автоматизации.

На первой стадии автоматизации рабочий полностью освобождается от физического труда (во время работы машины), включая труд по управлению производственным процессом. Он осуществляет первоначальную наладку машины, наблюдает за машиной и устраняет отклонения от нормальной ее работы. Первая стадия автоматизации обеспечивается разомкнутой системой автоматического управления (не имеющей обратных связей). Примером может служить: токарно-револьверные автоматы, токарные многошпиндельные автоматы, и другие станки и машины с кулачковыми механизмами. Кулачок в этом случае обеспечивает определенную последовательность, направление, величину и скорость перемещения исполнительных органов.

Во второй стадии автоматизации используются замкнутые автоматические системы управления с обратными связями, которые не только обеспечивают выполнение заданной программы, но и автоматически, без вмешательства рабочего регулируют и поддерживают нормальные условия работы машины. Труд рабочего в этом случае сводится в основном к первоначальной наладке машины. Взять, к примеру, токарную обработку длинных валов. При токарной обработке износ резца приводит к увеличению диаметра обработки, и если прибором активного контроля измерять диаметр обработки и по результатам этих измерений автоматически вводить поправку в настройку станка (перемещать резец в нужном направлении), то будем иметь САР, которая поддерживает нормальные условия работы.

Отличительной чертой третьей стадии автоматизации является способность системы управления выполнять логические операции для выбора оптимальных условий работы машины. Помимо устройств с обратными связями такие системы управления имеют устройства для

решения логических задач (счетно-решающие машины), позволяющие выполнять работу при оптимальных условиях с учетом переменности внешних и внутренних режимов работы машины. Такие машины являются самоуправляющими. Например, станки с подключенной к ней ЭВМ, оптимизирующие обработку по признаку минимальной шероховатости, или же обеспечивающие максимальный съем металла.

Автоматом называют рабочую машину (систему машин), при осуществлении технологического процесса на которой, все элементы рабочего цикла (рабочие и холостые ходы) выполняются автоматически. Повторение цикла осуществляется без участия человека. В простейших автоматах человек осуществляет наладку автомата и контролирует его работу. В более совершенных системах автоматически контролируется количество и качество изделия, регулируется и меняется инструмент, подаются исходные заготовки и материал, убирается стружка и др.

Полуавтоматом называют рабочую машину, цикл работы которой в конце выполняемой операции автоматически прерывается. Для возобновления цикла (пуск полуавтомата) необходимо вмешательство человека, который устанавливает и снимает заготовки, пускает станок и контролирует его работу, меняет и регулирует инструмент.

Термины и определения видов гибких производственных систем устанавливает ГОСТ 26228-84.

Гибкая производственная система (ГПС) - совокупность или отдельная единица технологического оборудования и систем обеспечения его функционирования в автоматическом режиме, обладающая свойством автоматизированной переналадки при производстве изделий произвольной номенклатуры в установленных пределах их характеристик.

ГПС по организационной структуре подразделяются на следующие уровни:

* гибкий производственный модуль - первый уровень;

* гибкая автоматизированная линия и гибкий автоматизированный участок - второй уровень;

* гибкий автоматизированный цех - третий уровень;

* гибкий автоматизированный завод - четвертый уровень;

По ступеням автоматизации ГПС подразделяются на следующие ступени:

* гибкий производственный комплекс - первая ступень;

* гибкое автоматизированное производство - вторая ступень.

Если не требуется указания уровня организационной структуры производства или ступеней автоматизации, то применяют обобщающий термин «гибкая производственная система».

Гибкий производственный модуль (ГПМ) - это гибкая производственная система, состоящая из единицы технологического оборудования, оснащенная автоматизированным устройством программного управления и средствами автоматизации технологического процесса; автономно функционирующая, осуществляющая многократные циклы и имеющая возможность встраивания в систему более высокого уровня. Частным случаем ГПМ является роботизированный технологический комплекс (РТК) при условии возможности его встраивания в систему более высокого уровня. В общем случае в ГПМ входят накопители, приспособления, спутники (палеты, устройства загрузки и выгрузки, в том числе промышленные роботы (ПР), устройства замены оснастки, удаления отходов, автоматизированного контроля, включая диагностирование, переналадку и т.д.

Гибкая автоматизированная линия (ГАЛ) - ГПС, состоящая из нескольких гибких производственных модулей, объединенных автоматизированной системой управления, в которой технологическое оборудование расположено в принятой последовательности технологических операций.

Гибкий автоматизированный участок (ГАУ) - ГПС, состоящая из нескольких гибких производственных модулей, объединенных автоматизированной системой управления, функционирующая по технологическому маршруту, в котором предусмотрена возможность изменения последовательности использования технологического оборудования.

Гибкий автоматизированный цех (ГАЦ) – ГПС, представляющая собой совокупность гибких автоматизированных линий и (или) гибких автоматизированных участков, предназначенная для изготовления изделия заданной номенклатуры.

Гибкий автоматизированный завод (ГАЗ) – ГПС, представляющая собой совокупность гибких автоматизированных цехов, предназначенная для выпуска готовых изделий в соответствии с планом основного производства.

Приведенные определения не охватывают такие термины как: автоматическая линия, автоматический участок, цех, завод. ЭНИМС предлагает следующие определения:

Линия автоматическая (ЛА) – совокупность технологического оборудования, установленного в последовательности техпроцесса обработки, соединенного автоматическим транспортом и оснащенная автоматическими загрузочно-разгрузочными устройствами и общей системой управления или несколькими взаимосвязанными системами управления.

По ступеням автоматизации различают два вида ГПС:

Гибкий производственный комплекс (ГПС) – это гибкая производственная система, состоящая из нескольких гибких производственных модулей, объединенных автоматизированной системой управления и автоматизированной транспортно-складской системой, автономно функционирующая в течение заданного интервала времени и

имеющая возможность встраивания в систему более высокой ступени автоматизации.

Гибкое автоматизированное производство (ГАП) – ГПС, состоящая из одного или нескольких производственных комплексов, объединенных автоматизированной системой управления производством и транспортно-складской автоматизированной системой, и осуществляющая автоматизированный переход на изготовление новых изделий.


 

В39.Основные принципы построения технологических процессов механической обработки в автоматизированном производстве.

Автоматизированный технологический процесс проектируется в несколько стадий. На каждой стадии оценивается эффективность различных вариантов выполнения операций путем сравнения их по определенной методике. Обычно критерием эффективности принимается себестоимость или производительность технологического процесса.

На первой стадии выбираются методы обработки и составляются ее план, дается технико-экономическое обоснование принятого варианта технологического процесса. На последующих стадиях определяется содержание отдельных операций, межоперационные припуски и допуски, тип инструментов, режимы обработки и другие параметры технологического процесса. Далее разрабатывается принципиальная схема конструкций специальных приспособлений, транспортных и загрузочных устройств, а также вспомогательных приспособлений (блоки инструментов, многорезцовые державки, быстросменные патроны и др.). Даются схемы компоновок специальных многоинструментальных и агрегатных станков, РТК, систем автоматического управления, поднастройки и регулирования процесса обработки.

План обработки предусматривает наметку определенного порядка операций, позволяющего увязать в комплексе конструкции станка, загрузочно-разгрузочных, транспортных устройств и средств автоматического контроля. План обработки составляется на основе анализа чертежа детали и заготовки. Расчленение технологического процесса на отдельные операции и последовательность их выполнения устанавливаются с учетом:

* максимальной концентрации операций;

* сохранение постоянства баз;

* выравнивание по продолжительности времени выполнения отдельных операций;

* выполнение чистовых и отделочных операций в конце процесса.

Установочные базы могут иметь любую форму поверхности (плоскую, цилиндрическую, коническую или криволинейную), если они обеспечивают:

* необходимую точность ориентации заготовки относительно инструмента при автоматической загрузке;

* удобство установки и надежность фиксации и закрепления заготовки в рабочей позиции в приспособлениях, смонтированных на станке;

* сохранение постоянства базы в процессе всего цикла обработки детали.

Выбранные базовые поверхности должны не только удовлетворять обычным технологическим требованиям (стабильность положения заготовки в процессе обработки, наименьшие погрешности установки, жесткость и устойчивость под действием зажимных усилий и сил резания и др.), но также обеспечивать наиболее благоприятные условия автоматической загрузки заготовок в приспособления и транспортирования заготовок. При выборе баз необходимо учитывать также конструкцию автоматического загрузочного устройства.

Базовыми поверхностями при обработке корпусов, например, служат плоскости с фиксирующими отверстиями или цилиндрические наружные и внутренние посадочные плоскости. При обработке валов – центровые фаски и наружные цилиндрические поверхности; при обработке дисков и фланцевых деталей - торцевые поверхности и выступающие цилиндрические пояски.

При обработке на автоматических линиях деталей сложной формы, не имеющих удобных базовых поверхностей, как, например, лопатки турбин и компрессоров, применяются приспособления-спутники, в которых устанавливаются и закрепляются заготовки, помещаемые от начала до конца линии.

Проектирование операций, выполняемых автоматически, включает подробную разработку содержания каждого перехода, последовательность выполнения и возможность совмещения их во времени, выбор оборудования, инструментов и приспособлений, режимов резания. Для каждой операции устанавливают настроечные размеры, и составляется схема наладки;

определяется норма времени на выполнение операции и производится выравнивание его заданному такту.

Оборудование, применяемое при определенном технологическом процессе выбирается в зависимости от методов и сложности обработки, размеров детали и масштабов производства. Прежде всего, оно должно обеспечивать выполнение технических требований, предъявляемых к обрабатываемой детали в отношении точности ее размеров, формы и качества поверхности. Оборудование должно быть высокопроизводительным и экономичным в эксплуатации.

В зависимости от масштабов производства степень автоматизации технологического оборудования может быть различной. Анализ использования оборудования, по данным зарубежных стран (ФРГ, США), показывает, что в мелкосерийном производстве (до 10 деталей в партии) станки работают (основное технологическое время) только 6% от астрономического фонда времени, в среднесерийном (11-5000 деталей в партии) - до 8%, в крупносерийном и массовом (более 5000 деталей в партии) - до 22%. В третью смену, выходные и праздничные дни, зачастую и во вторую смену, что составляет от астрономического фонда времени 50%и более, станочное оборудование на предприятиях не работает.

К настоящему времени определились тенденции, а также разработаны типовые конструкторско-технологические решения автоматизации различных видов производства:

* для мелко- и среднесерийного - станки с ЧПУ, роботизированные станки с ЧПУ (модули), роботизированные участки станков с ЧПУ, гибкие производственные системы;

* для крупносерийного - переналаживаемые автоматические линии или гибкие производственные системы на базе специальных станков и станков с ЧПУ;

* для массового - классические (переналаживаемые) автоматические линии, агрегатные и специальные станки, комплексные автоматические системы на их базе.

При проектировании АТП важно правильно сочетать принципы дифференциации технологического процесса и концентрации операций, обеспечивающих максимальную производительность.

Концентрация операций автоматизированного технологического процесса осуществляется путем применения:

* сложного комбинированного инструмента (фасонных токарных резцов, ступенчатых сверл, зенкеров и разверток, фасонных фрез, сложных протяжек, профильных шлифовальных кругов и т.д.);

* наборного инструмента (набора резцов в одной державке, набора сверл, зенкеров, разверток и метчиков в многошпиндельной головке, набора фрез, шлифовальных кругов и т.д.);

* многоинструментальных агрегатных, многопозиционных и специальных станков.

Степень концентрации операций при обработке деталей на автоматах и автоматических линиях может быть очень высокой. Однако если совмещение переходов во времени влечет за собой значительное увеличение числа инструментов в наладке, то эффективность высокой концентрации операций снижается, ибо чрезмерное увеличение числа инструментов связано с неизбежным увеличением затрат времени на регулировку и поднастройку инструментов. В результате чего производительность труда не возрастает, а снижается. Кроме того, для осуществления многоинструментальных наладок требуется более сложная и дорогостоящая техническая оснастка, что, в свою очередь, отражается на себестоимости обработки изделия. Оптимальное количество инструментов в наладке, например, револьверной головки можно определить, построив кривую зависимости производительности обработки Q (шт./мин) от количества инструментов «р» в наладке. Эта зависимость выражается уравнением следующего вида:

где: ∑ tp = Tp – суммарное время, в течение которого «р» рабочих инструментов производят обработку одного изделия, мин.;

р – количество инструментов в наладке;

∑tx – суммарное время холостых ходов, мин.;

tc – суммарное время на смену и регулировку одного инструмента;

Tb – вспомогательное время на установку съем детали.

Входящие в формулу вспомогательное время Тв и время холостых ходов станка ∑tx на одну деталь являются величинами постоянными и не зависят от числа инструментов в наладке, они не влияют на характер кривой Q = f(p), а затраты времени на смену и регулирование инструментов прямо пропорциональны количеству инструментов в наладке. Максимум производительности обработки достигается при определенном количестве инструментов «р» в наладке. Это значение «р» определяет предел концентрации операций данного процесса.

Для обработки среднегабаритных и мелких деталей по методу высокой концентрации операций наиболее целесообразно предусматривать многошпиндельные автоматы, многопозиционные агрегатные полуавтоматы и автоматы, а для обработки крупногабаритных корпусных деталей – агрегатные станки, скомпонованные из нормализованных узлов и многооперациионные станки с ЧПУ.

Типизация технологических процессов и групповая обработка подобных однородных деталей являются одним из важнейших мероприятий, обеспечивающих сокращение сроков и стоимости технологической подготовки автоматизированного производства. Предпосылкой типизации технологических процессов является классификация однородных деталей и их элементов, методов и средств их изготовления.

Типовые технологические процессы разрабатываются на основе анализа, систематизации и обобщения опыта промышленности по изготовлению подобных деталей и предусматривает применение высокопроизводительного оборудования, средств механизации и автоматизации и прогрессивных методов обработки. При этом широко осуществляется нормализация и унификация подобных деталей и их конструктивных элементов.

Различают метод типизации применительно с определенным классом однородных деталей и по видам обрабатываемых поверхностей, и комплексный метод, основанный на классификации обрабатываемых поверхностей применительно к определенным классам деталей. При этом всякая сложная поверхность детали любой геометрической формы рассматривается как совокупность простых, элементарных поверхностей.

При одном и том же способе установки детали на станке можно обработать один или несколько элементов формы, которые образуют технологическую поверхность. Для всех подобных технологических поверхностей в зависимости от их геометрической формы, размеров и концентрации детали определяется оптимальный метод их получения, необходимое оборудование и средства автоматизации.

Типизация технологических процессов позволяет применять нормализованные приспособления, которые проектируются по типовым схемам базирования и закрепления деталей, и обеспечивают возможность полной или частичной обработки на одном приспособлении нескольких типоразмеров с помощью комбинированного инструмента и многоинструментальных наладок.

По принципу типизации технологических процессов разработан метод групповой обработки деталей. Он характеризуется общностью оборудования и оснастки для выполнения одинаковых операций на однородных деталях. В основе построения технологических процессов групповой обработки лежит сложная комплексная деталь, состоящая из ряда элементарных поверхностей. Другие детали, объединенные в группу, должны иметь полное или частичное сочетание тех же поверхностей, что и у комплексной детали и те же базы. Таким образом, комплексна


Поделиться с друзьями:

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.072 с.