Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Параметры насосов типа эцнм, эцнмк, эцнмт, эцнмкт ту 26-06

2017-06-20 1662
Параметры насосов типа эцнм, эцнмк, эцнмт, эцнмкт ту 26-06 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

ГЛАВА 6

ДОБЫЧА НЕФТИ БЕСШТАНГОВЫМИ

НАСОСАМИ

6.1. Область применения установок электропо­гружных центробежных насосов (УЭЦН)

Эксплуатация нефтяных скважин УЭЦН широко распро­странена на нефтяных промыслах Российской Федерации, и, особенно, в Западной Сибири. В этом регионе более 90 % всей добываемой нефти поднимается на поверхность земли с помо­щью УЭЦН. Особенно широко используются центробежные насосы при интенсификации добычи нефти.

Установки ЭЦН выпускают для эксплуатации высокодебитных, обводненных, глубоких и наклонных скважин с дебитом 20-1000 м3/сут и высотой подъема жидкости 500-2000 м.

В области больших подач (свыше 80 м3/сут) УЭЦН имеют самый высокий КПД среди всех механизированных способов добычи нефти. В интервале подач от 50 до 300 м3/сут КПД УЭЦН превышает 40 %, но в области небольших подач КПД УЭЦН резко падает. Также установки ЭЦН меньше подверже­ны влиянию кривизны ствола скважины.

Влияние кривизны ствола скважины у ЭЦН сказывается в основном при спускоподъемных операциях из-за опасности повреждения кабеля и не связано (до определенной величины угла наклона скважины и темпа набора кривизны), как у ШСН, с самим процессом эксплуатации. Однако ЭЦН плохо работают в условиях коррозионно-агрессивной среды, при выносе песка, в условиях высокой температуры и высокого газового фактора.

Обслуживание установок ЭЦН просто, так как на поверхно­сти размещаются только станция управления и трансформатор, не требующие постоянного ухода. Работа установок ЭЦН до­статочно легко поддается автоматизации и телеуправлению.

При использовании ЭЦН возможно применение эффек­тивных средств уменьшения отложений парафина в подъем­ных трубах. Применяются защитные покрытия НКТ, системы автоматической подачи специальных химических реагентов в скважину и автоматизированные установки со скребками, спускаемыми на проволоке. Монтаж наземного оборудования УЭЦН прост, так как станция управления и трансформатор не нуждаются в устройстве фундаментов. Эти два узла уста­новки ЭЦН размещают обычно в легких будках или в шкафах. Межремонтный срок работы установок ЭЦН составляет по Западной Сибири в среднем около года. Применение новых кон­структивных разработок, а также усовершенствование способов диагностики, обслуживания и ремонта позволит в ближайшие годы увеличить межремонтные сроки в 1,5—2 раза.

Бесштанговые насосы содержат скважинный насос и сква­жинный привод насоса, непосредственно соединенные между собой. Энергия к приводу насоса подводится по кабелю (при электроприводе) или по трубопроводу (при гидро- или пнев­моприводе). Благодаря отсутствию длинной механической связи между приводом и насосом, бесштанговые насосы имеют значительно большую мощность, чем штанговые. Это дает воз­можность поддерживать большие отборы жидкости некоторыми видами бесштанговых насосов. В Российской Федерации уста­новками ЭЦН оснащено более 35 % всех нефтяных скважин и добывается более 65 % всей нефти.

Разработка бесштанговых насосов в нашей стране началась еще в начале XX века, когда А.С. Арутюнов вместе с В.К. Долго­вым разработали скважинный агрегат, в котором центробежный насос приводился в действие погружным электродвигателем. Впоследствии А.С. Арутюнов создал всемирно известную фир­му REDA - Русский электродвигатель Арутюнова.

Промышленные образцы центробежных насосов с электро­приводом были разработаны в Советском Союзе Особым конструкторским бюро по бесштанговым насосам (ОКБ БН). В настоящее время многие российские фирмы продолжают работы по созданию бесштанговых насосов новых типов и типоразмеров и следят за рациональным применением разра­ботанных конструкций.

В последние годы нефтяная промышленность получает большое количество новых видов УЭЦН, для изготовления которых чаще применяются высококачественные материалы и высокие технологии, которые ранее использовались лишь в аэрокосмических отраслях.

Схема установки ЭЦН

Установка ЭЦН является сложной технической системой и, несмотря на широко известный принцип действия центробеж­ного насоса, представляет собой совокупность оригинальных по конструкции элементов. Принципиальная схема УЭЦН приведена на рис. 6.1. Установка состоит из двух частей: на­земной и погружной. Наземная часть включает автотрансфор­матор 1; станцию управления 2; иногда кабельный барабан 3 и оборудование устья скважины 4. Погружная часть включает колонну НКТ 5, на которой погружной агрегат спускается в скважину; бронированный трехжильный электрический кабель 6, по которому подается питающее напряжение погружному электродвигателю и который крепится к колонне НКТ специ­альными зажимами 7.

Погружной агрегат состоит из многоступенчатого цен­тробежного насоса 8, оборудованного приемной сеткой 9 и обратным клапаном 10. В комплект погружной установки вхо­дит сливной клапан 11 через который сливается жидкость из НКТ при подъеме установки. В нижней части насос сочленен с узлом гидрозащиты (протектором) 12, который, в свою очередь, сочленен с погружным электродвигателем 13. В нижней части электродвигатель 13 имеет компенсатор 14.

Жидкость поступает в насос через сетку, расположенную в его нижней части. Сетка обеспечивает фильтрацию пластовой жидкости. Насос подает жидкость из скважины в НКТ.

Установки ЭЦН в России разработаны для скважин с обсадными колоннами диаметром 127, 140, 146 и 168 мм. Для обсадных колонн размера 146 и 168 мм имеются погружные агрегаты двух габаритов. Один предназначен для скважин с наименьшим внутренним диаметром (по ГОСТу) обсадной колонны. В этом случае и агрегат ЭЦН имеет меньший диаметр, а, следовательно, и меньшие предельные величины рабочей характеристики (напор, подача, КПД).

 

Рис. 6.1. Принципиальная схема УЭЦН:

1 - автотрансформатор; 2 - станция управления; 3 - кабель­ный барабан; 4 - оборудование устья скважины; 5 - колонна НКТ; 6 — бронированный электрический кабель; 7 - зажимы для кабеля; 8 - погружной многоступенчатый центробежный насос; 9 - приемная сетка насоса; 10 - обратный клапан; 11 -сливной клапан; 12 -узел гидрозащиты (протектор); 13 - по­гружной электродвигатель; 14 - компенсатор

Каждая установка имеет свой шифр, например УЭЦН5А-500-800, в котором приняты следующие обозначения цифра (или цифра и буква) после УЭЦН обозначает наименьший до­пустимый внутренний диаметр обсадной колонны, в которую он может быть спущен, цифра «4» соответствует диаметру 112 мм, цифра «5» соответствует 122 мм, «5А» - 130 мм, «6» - 144 мм и «6А» — 148 мм; второе число шифра обозначает номинальную подачу насоса (в м3/сУт) и третье - примерный напор в м. Зна­чения подачи и напора даны для работы на воде.

В последние годы номенклатура выпускаемых установок центробежных насосов значительно расширилась, что нашло отражение и в шифрах выпускаемого оборудования. Так, уста­новки ЭЦН, выпускаемые фирмой АЛНАС (г. Альметьевск, Татарстан), в шифре имеют заглавную букву «А» после надписи «УЭЦН», а установки Лебедянского механического завода (АО «Лемаз», г. Лебедянь Курской обл.) имеют заглавную букву «Л» перед надписью «УЭЦН». Установки центробежных насосов с двухопорной конструкцией рабочего колеса, предназначенных для отбора пластовой жидкости с большим количеством меха­нических примесей имеют в своем шифре «2» после буквы «Л» и перед надписью УЭЦН (для насосов фирмы «Лемаз»), букву «Д» после надписи «УЭЦН» (для насосов «АО «Борец»), букву «А» перед цифрой габарита установки (для насосов АЛНАС). Коррозионностойкое исполнение УЭЦН отражается буквой «К» в конце шифра установки, термостойкое — буквой «Т». Конструкция рабочего колеса с дополнительными вихревыми лопатками на заднем диске (фирма «Новомет», г. Пермь) имеет в шифре насоса буквенное обозначение ВННП.

6.3. Основные узлы установки ЭЦН, их назна­чение и характеристика

Скважинные центробежные насосы

Скважинные центробежные насосы являются многоступен­чатыми машинами. Это обусловлено в первую очередь малыми значениями напора, создаваемым одной ступенью (рабочим ко­лесом и направляющим аппаратом). В свою очередь небольшие значения напора одной ступени (от 3 до 6-7 м водяного столба) определяются малыми величинами внешнего диаметра рабочего колеса, ограниченного внутренним диаметром обсадной ко­лонны и размерами применяемого скважинного оборудования - кабеля, погружного двигателя и т.д.

Конструкция скважинного центробежного насоса может быть обычной и износостойкой, а также повышенной коррози­онной стойкости. Диаметры и состав узлов насоса в основном одинаковы для всех исполнений насоса.

Скважинный центробежный насос обычного исполнения предназначен для отбора из скважины жидкости с содержанием воды до 99%. Механических примесей в откачиваемой жидко­сти должно быть не более 0,01 массовых % (или 0,1 г/л), при этом твердость механических примесей не должна превышать 5 баллов по Моосу; сероводорода — не более 0,001%. По требова­ниям технических условий заводов-изготовителей, содержание свободного газа на приеме насоса не должно превышать 25%.

Центробежный насос коррозионностойкого исполнения предназначен для работы при содержании в откачиваемой пластовой жидкости сероводорода до 0,125% (до 1,25 г/л). Износостойкое исполнение позволяет откачивать жидкость с содержанием механических примесей до 0,5 г/л.

Ступени размещаются в расточке цилиндрического корпуса каждой секции. В одной секции насоса может размещаться от 39 до 200 ступеней в зависимости от их монтажной высоты. Максимальное количество ступеней в насосах достигает 550 штук.

 

Рис. 6.2. Схема скважинного центробежного насоса:

1 - кольцо с сегментами; 2,3- гладкие шайбы; 4,5- шайбы амортизаторы; 6 - верхняя опора; 7 - нижняя опора; 8 - пру­жинное кольцо опоры вала; 9 - дистанционная втулка; 10 -основание; 11 - шлицевая муфта.

Модульные ЭЦН

Для создания высоконапорных скважинных центробежных насосов в насосе приходится устанавливать множество ступеней (до 550). При этом они не могут разместиться в одном корпусе, поскольку длина такого насоса (15-20 м) затрудняет транспор­тировку, монтаж на скважине и изготовление корпуса.

Высоконапорные насосы составляются из нескольких сек­ций. Длина корпуса в каждой секции не более 6 м. Корпусные детали отдельных секций соединяются фланцами с болтами или шпильками, а валы шлицевыми муфтами. Каждая секция насо­са имеет верхнюю осевую опору вала, вал, радиальные опоры вала, ступени. Приемную сетку имеет только нижняя секция. Ловильную головку — только верхняя секция насоса. Секции высоконапорных насосов могут иметь длину меньшую, чем 6 м (обычно длина корпуса насоса составляет 3,4 и 5 м), в зависи­мости от числа ступеней, которые надо в них разместить.

Насос состоит из входного модуля (рис. 6.4), модуля секции (модулей-секций) (рис. 6.3), модуля головки (рис. 6.3), обрат­ного и спускного клапанов.

 

 

Допускается уменьшить число модулей-секций в насосе, соответственно укомплектовав погружной агрегат двигателем необходимой мощности.

Соединения модулей между собой и входного модуля с двигателем фланцевые. Соединения (кроме соединения входного модуля с двигателем и входного модуля с газосепа­ратором) уплотняют резиновыми кольцами. Соединение валов модулей-секций между собой, модуля-секции с валом входного модуля, вала входного модуля с валом гидрозащиты двигателя осуществляют с помощью шлицевых муфт.

Валы модулей-секций всех групп насосов, имеющих одина­ковые длины корпусов 3,4 и 5 м, унифицированы. Для защиты кабеля от повреждений при спускоподъемных операциях на основаниях модуля-секции и модуля-головки расположены съемные стальные ребра. Конструкция насоса позволяет без дополнительной разборки использовать модуль насосный газосепаратор, который устанавливается между модулем вход­ным и модулем-секцией.

Технические характеристики некоторых типоразмеров ЭЦН для добычи нефти, изготавливаемых российскими фир­мами по техническим условиям представлены в таблице 6.1 и рис. 6.6.

Таблица 6.1

Монтаж и эксплуатация УЭЦН

Перед монтажом установки электроцентробежного насо­са скважину необходимо тщательно подготовить. Для этого скважину промывают, то есть очищают от грязи и песчаной пробки, после чего проводится контрольная отбивка забоя и отбор пробы на содержание механических примесей (содер­жание КВЧ в растворе не должно превышать 100 мг/л). Затем скважину шаблонируют (проверяют проходимость ствола). Шаблонирование эксплуатационной колонны перед спуском УЭЦН производится:

- в скважинах, выходящих из бурения или из капитального ремонта, связанного с ремонтом эксплуатационной колонны;

- при переводе скважины на эксплуатацию с помощью УЭЦН (с другого способа эксплуатации);

- при смене УЭЦН на типоразмер большего диаметра;

- при увеличении глубины спуска УЭЦН;

- в случаях обнаруженного механического повреждения кабеля и затяжках при спускоподъемных операциях.

Глубина спуска шаблона должна быть ниже места размеще­ния УЭЦН не менее чем на 50 метров.

Длина шаблона должна быть не меньше длины установки ЭЦН, но не менее 16 метров. Диаметр шаблона определяется размерами эксплуатационной колонны и установки и находится в пределах на 2-4 мм больше максимального диаметра погружного агрегата. В случаях непрохождения шаблона либо при затяжках производится райбирование эксплуатационной колонны с последующим шаблонированием.

На расстоянии 25 м от скважин (в зоне видимости скважин) подготавливается площадка для размещения наземного элек­трооборудования УЭЦН с контуром заземления, связанным с контуром заземления трансформаторной подстанции (ТП 6/0,4) и кондуктором скважины стальной лентой.

На расстоянии от 5 до 25 м от устья скважины устанавли­вается клеммная коробка, отвечающая по конструкции требо­ваниям техники безопасности.

Устьевая арматура скважины, подготовленной к запуску УЭЦН, оборудуется манометрами, обратным клапаном на линии, соединяющей затрубное пространство с выкидом, шту­церной камерой (при технологической целесообразности) и патрубком для исследования.

Автонаматыватель устанавливается на расстоянии 15-20 м от устья скважины так, чтобы ось кабельного барабана была перпенди­кулярна плоскости вращения кабельного ролика, радиус которого должен быть не меньше 380 мм.

Производится центровка талевой системы подъемника от­носительно устья скважина. Кабельный ролик подвешивается на мачте подъемника, на высоте 8-10 метров таким образом, чтобы ось вращения кабельного ролика и ось барабана были перпендикулярны плоскости вращения ролика.

Погружное оборудование монтируют непосредственно на устье скважины. В процессе монтажа мастер (бурильщик, стар­ший оператор) бригады ремонта скважин контролирует:

- сверяет соответствие типоразмера привезенной установки заказанной, а также номеров узлов записанным в эксплуатаци­онном паспорте;

- контролирует опрессовку токоввода ПЭД на величину 5 кгс/см2 в течение 10 минут, при которой не допускаются падение давления, течь масла и запотевание;

- проверяет установку шлицевых муфт и легкость враще­ния валов;

- проверяет сопротивление изоляции установки в сборе, которое должно составить не менее 100 МОм, наличие марки­ровки и фазировки концов кабеля;

- проверяет длину кабеля по записям в протоколе на кабель и на бирке (клейме) кабеля с отметкой об этом в эксплуатаци­онном паспорте УЭЦН;

- при монтаже УЭЦН с ПЭД мощностью 90 кВт и выше требует выполнения фазировки на устье;

- контролирует использование при монтаже нового крепежа (болтов, гаек, винтов, пружинных шайб) взамен транспортиро­вочного и производства их затяжки моментными ключами с ве­личиной усилия, равной 5 кгс для гаек М12 и 3,5 кгс — М10;

- подтверждает качество выполненного монтажа и готов­ность оборудования УЭЦН к спуску, о чем расписывается в эксплуатационном паспорте УЭЦН.

Спуск установки ЭЦН в скважину производится со скоро­стью не выше 0,25 м/сек (при средней длине трубы 8 м время ее спуска составит 32 сек).

В процессе спуска установки периодически производится проверка центровки подъемника относительно устья скважины, при необходимости выполняется его центровка.

При спуске установки необходимо обязательное соблюде­ние следующих требований:

- зачистка металлической щеткой и смазка резьб НКТ;

- шаблонирование каждой трубы (при использовании ре­монтных и повторно используемых труб);

- замер длины каждой трубы с записью меры НКТ;

- очистка наружной поверхности НКТ от песка и парафи­на.

При спуске УЭЦН в скважину проворачивание установки и подвески НКТ недопустимо. С этой целью при использовании ключей без задерживающих устройств первые 20-30 труб над УЭЦН свинчиваются вручную с применением задерживающего ключа.

В процессе спуска недопустимы рывки или натяжка и изги­бы кабеля радиусом менее 380 мм, кабель от автонаматывателя до устья должен находиться в постоянно провисшем состоянии под собственным весом, но при этом не волочиться по земле, а находиться в стойках.

" Кабель к НКТ крепится стальными поясами (клямсами) на расстоянии 250-300 мм выше и ниже каждой муфты НКТ, не до­пуская при этом слабины и провисов кабеля внутри скважины. Стальные пояса устанавливаются также выше и ниже сростков кабеля на расстоянии 150-200 мм от них. Если сростка оказалась на муфте НКТ, то труба заменяется на другую необходимой длины. Стальные пояса затягиваются до момента начальной деформации брони кабеля. Пряжки стального пояса следует располагать в свободном пространстве между НКТ и кабелем. - Обратный и сбивной клапаны поставляются на скважину в комплекте с УЭЦН. Седло обратного клапана должно иметь резиновый уплотнитель. Обратный клапан должен обеспечи­вать герметичность по жидкости.

Между обратным и сливным клапанами свинчиваются 1-2 шт. НКТ во избежание перекрытия сбивного клапана осаждаю­щимся песком или другими механическими частицами,

.Через каждые 300 метров спуска УЭЦН проверяется сопро­тивление изоляции УЭЦН мегаомметром с записью результатов замера в эксплуатационном паспорте установки.

При снижении сопротивления изоляции до величины менее 5 МОм или обнаружения повреждений на кабельной линии, а также при появлении осложнений спуск прекращается.

После окончания спуска УЭЦН замеряется сопротивление изоляции установки до и после герметизации сальникового ввода кабеля, величина которого должна быть не менее 5 МОм. Свободный конец брони кабеля закрепляется под гайкой устье­вой арматуры. Кабель прокладывается от устья до станции управления или клеммной коробки (при ее наличии).

В процессе эксплуатации погружных электронасосов про­водятся замеры следующих параметров работы установки с записью в эксплуатационном паспорте:

- дебита скважины;

- буферного, затрубного и линейного давлений;

- рабочего тока;

- сопротивления изоляции:

• - через 1 сутки — после вывода на режим (контрольный замер);

• - еженедельно — до 60 суток работы;

• - ежемесячно — после 60 суток работы;

- динамического уровня:

• - через 1 сутки после вывода установки на стабильный режим;

• - ежеквартально — в процессе эксплуатации. Отбор проб на содержание КВЧ в продукции осуществля­ется:

- при выводе на режим (жидкость глушения);

- через двое суток после вывода на режим;

- один раз в полугодие в процессе дальнейшей эксплуата­ции.

Отбор проб на обводненность производится после вывода на режим, далее не реже двух раз в месяц с записью результатов анализа в эксплуатационный паспорт УЭЦН.

В соответствии с графиком проводятся операции по пред­упреждению отложений парафина, солей в подъемных лифтах скважин с отметкой в эксплуатационном паспорте УЭЦН.

Рис. 6.15. Газосепаратор типа 1МНГ5

1 - головка; 2 - подшипник; 3 - вал; 4 - сепаратор; 5 - направ­ляющий аппарат; 6 - рабочее колесо; 7 - корпус; 8 - шнек; 9 - основание

 

Учеными ГАНГ им. И.М. Губкина был предложен новый тип сепарации, на основе которого была разработана конструкция модуля насосного газосепаратора МН-ГСЛ5 (рис. 6.16) к по­гружным насосам группы 5.Масса нового сепаратора оказалась примерно в 2 раза меньше, чем у 1МНГ5, в частности, за счет упрощения конструкции. Кроме того, в МН-ГСЛ5 предусмо­трена защита внутренней поверхности корпуса от абразивного износа. Новый сепаратор позволяет стабильно работать насосу до 80% содержания газа.

Газосепаратор типа МН-ГСЛ состоит из трубного корпуса 1 с головкой 2, основания 3 с приемной сеткой и вала 4 с рас­положенными на нем рабочими органами. В головке выполнены две группы перекрестных каналов 5, 6 для газа и жидкости и установлена втулка радиального подшипника 7. В основании размещены закрытая сеткой полость с каналами 8 для приема газожидкостной смеси, подпятник 9 и втулка 10 радиального подшипника. На валу размещены пята 11, шнек 12, осевое рабочее колесо 13 с суперкавитирующим профилем лопастей, сепараторы 14 и втулки радиальных подшипников 15. в корпусе размещены направляющая решетка и гильзы.

Газосепаратор работает следующим образом: ГЖС попадает через сетку и отверстия входного модуля на шнек и далее к рабочим органам газосепаратора. За счет приобретенного на­пора ГЖС поступает во вращающуюся камеру сепаратора, где под действием центробежных сил газ отделяется от жидкости.

 

Рис. 6.17. Центробежный сепаратор фирмы REDA

Далее жидкость с перифе­рии камеры сепаратора по­ступает по каналам перево­дника на прием насоса, а газ через наклонные отверстия отводится в затрубное про­странство.

Газосепараторы выпу­скают и другие российские производители: ОАО "Бо­рец" и ОАО "Алнас". Пред­лагаются газосепараторы двух типов: модульные и встроенные в нижнюю сек­цию насоса.

Все типы отечественных газосепараторов снабжены защитной гильзой, предо­храняющей корпус газосепа­ратора от гидроабразивного износа. Благодаря этому повышается ресурс работы оборудования, уменьшается вероятность аварии.

Для откачивания из скважин нефтяной продукции, представ­ляющей собой ГЖС, установками погружных центробежных насосов фирма REDА предлагает центробежный (рис. 6.17) газосепаратор для случаев с большим газосодержанием (60%).

По данным фирмы, центробежный газосепаратор удаляет из ГЖС до 90% свободного газа.

Несмотря на широкое применение газосепараторов, необ­ходимо отметить и их недостатки:

1. Возможность блокирования скважины газовыми проб­ками из-за нестабильного поступления газа из скважины, из-за большой обводненности пластовой жидкости, при которой срывное газосодержание примерно пропорционально (1-в), где в - обводненность, или из-за грубой дисперсности газожидкост­ной смеси с остаточным газом, поступающей в первое рабочее колесо насоса, либо из-за воздействия всех этих факторов.

2. Применение газосепаратора может привести к частично­му фонтанированию скважины по затрубному пространству, что, в свою очередь, может привести к его перекрытию из-за отложений парафина и к прекращению функционирования сепаратора.

3. При применении сепаратора практически не использу­ется полезная работа газа при подъеме пластовой жидкости в НКТ, так как большей частью газ направляется в затрубное пространство.

4. Наблюдаются колебания потребляемой насосом с газосе­паратором мощности при откачивании ГЖС. Эти колебания при наличии газовой пробки могут привести к частым остановкам по недогрузке, повторным запускам, что снижает надежность работы всей установки.

5. Как показывает промысловая практика установок ЭЦН с газосепараторами, газосепаратор в силу характерных кон­структивных признаков (вращение откачиваемой жидкости с содержащимися в них мехпримесями на расстоянии достаточ­ной протяженности) или в силу недостаточной доработанности конструкции может явиться причиной не только отказа, но и «полета» установки.

ГЛАВА 6

ДОБЫЧА НЕФТИ БЕСШТАНГОВЫМИ

НАСОСАМИ

6.1. Область применения установок электропо­гружных центробежных насосов (УЭЦН)

Эксплуатация нефтяных скважин УЭЦН широко распро­странена на нефтяных промыслах Российской Федерации, и, особенно, в Западной Сибири. В этом регионе более 90 % всей добываемой нефти поднимается на поверхность земли с помо­щью УЭЦН. Особенно широко используются центробежные насосы при интенсификации добычи нефти.

Установки ЭЦН выпускают для эксплуатации высокодебитных, обводненных, глубоких и наклонных скважин с дебитом 20-1000 м3/сут и высотой подъема жидкости 500-2000 м.

В области больших подач (свыше 80 м3/сут) УЭЦН имеют самый высокий КПД среди всех механизированных способов добычи нефти. В интервале подач от 50 до 300 м3/сут КПД УЭЦН превышает 40 %, но в области небольших подач КПД УЭЦН резко падает. Также установки ЭЦН меньше подверже­ны влиянию кривизны ствола скважины.

Влияние кривизны ствола скважины у ЭЦН сказывается в основном при спускоподъемных операциях из-за опасности повреждения кабеля и не связано (до определенной величины угла наклона скважины и темпа набора кривизны), как у ШСН, с самим процессом эксплуатации. Однако ЭЦН плохо работают в условиях коррозионно-агрессивной среды, при выносе песка, в условиях высокой температуры и высокого газового фактора.

Обслуживание установок ЭЦН просто, так как на поверхно­сти размещаются только станция управления и трансформатор, не требующие постоянного ухода. Работа установок ЭЦН до­статочно легко поддается автоматизации и телеуправлению.

При использовании ЭЦН возможно применение эффек­тивных средств уменьшения отложений парафина в подъем­ных трубах. Применяются защитные покрытия НКТ, системы автоматической подачи специальных химических реагентов в скважину и автоматизированные установки со скребками, спускаемыми на проволоке. Монтаж наземного оборудования УЭЦН прост, так как станция управления и трансформатор не нуждаются в устройстве фундаментов. Эти два узла уста­новки ЭЦН размещают обычно в легких будках или в шкафах. Межремонтный срок работы установок ЭЦН составляет по Западной Сибири в среднем около года. Применение новых кон­структивных разработок, а также усовершенствование способов диагностики, обслуживания и ремонта позволит в ближайшие годы увеличить межремонтные сроки в 1,5—2 раза.

Бесштанговые насосы содержат скважинный насос и сква­жинный привод насоса, непосредственно соединенные между собой. Энергия к приводу насоса подводится по кабелю (при электроприводе) или по трубопроводу (при гидро- или пнев­моприводе). Благодаря отсутствию длинной механической связи между приводом и насосом, бесштанговые насосы имеют значительно большую мощность, чем штанговые. Это дает воз­можность поддерживать большие отборы жидкости некоторыми видами бесштанговых насосов. В Российской Федерации уста­новками ЭЦН оснащено более 35 % всех нефтяных скважин и добывается более 65 % всей нефти.

Разработка бесштанговых насосов в нашей стране началась еще в начале XX века, когда А.С. Арутюнов вместе с В.К. Долго­вым разработали скважинный агрегат, в котором центробежный насос приводился в действие погружным электродвигателем. Впоследствии А.С. Арутюнов создал всемирно известную фир­му REDA - Русский электродвигатель Арутюнова.

Промышленные образцы центробежных насосов с электро­приводом были разработаны в Советском Союзе Особым конструкторским бюро по бесштанговым насосам (ОКБ БН). В настоящее время многие российские фирмы продолжают работы по созданию бесштанговых насосов новых типов и типоразмеров и следят за рациональным применением разра­ботанных конструкций.

В последние годы нефтяная промышленность получает большое количество новых видов УЭЦН, для изготовления которых чаще применяются высококачественные материалы и высокие технологии, которые ранее использовались лишь в аэрокосмических отраслях.

Схема установки ЭЦН

Установка ЭЦН является сложной технической системой и, несмотря на широко известный принцип действия центробеж­ного насоса, представляет собой совокупность оригинальных по конструкции элементов. Принципиальная схема УЭЦН приведена на рис. 6.1. Установка состоит из двух частей: на­земной и погружной. Наземная часть включает автотрансфор­матор 1; станцию управления 2; иногда кабельный барабан 3 и оборудование устья скважины 4. Погружная часть включает колонну НКТ 5, на которой погружной агрегат спускается в скважину; бронированный трехжильный электрический кабель 6, по которому подается питающее напряжение погружному электродвигателю и который крепится к колонне НКТ специ­альными зажимами 7.

Погружной агрегат состоит из многоступенчатого цен­тробежного насоса 8, оборудованного приемной сеткой 9 и обратным клапаном 10. В комплект погружной установки вхо­дит сливной клапан 11 через который сливается жидкость из НКТ при подъеме установки. В нижней части насос сочленен с узлом гидрозащиты (протектором) 12, который, в свою очередь, сочленен с погружным электродвигателем 13. В нижней части электродвигатель 13 имеет компенсатор 14.

Жидкость поступает в насос через сетку, расположенную в его нижней части. Сетка обеспечивает фильтрацию пластовой жидкости. Насос подает жидкость из скважины в НКТ.

Установки ЭЦН в России разработаны для скважин с обсадными колоннами диаметром 127, 140, 146 и 168 мм. Для обсадных колонн размера 146 и 168 мм имеются погружные агрегаты двух габаритов. Один предназначен для скважин с наименьшим внутренним диаметром (по ГОСТу) обсадной колонны. В этом случае и агрегат ЭЦН имеет меньший диаметр, а, следовательно, и меньшие предельные величины рабочей характеристики (напор, подача, КПД).

 

Рис. 6.1. Принципиальная схема УЭЦН:

1 - автотрансформатор; 2 - станция управления; 3 - кабель­ный барабан; 4 - оборудование устья скважины; 5 - колонна НКТ; 6 — бронированный электрический кабель; 7 - зажимы для кабеля; 8 - погружной многоступенчатый центробежный насос; 9 - приемная сетка насоса; 10 - обратный клапан; 11 -сливной клапан; 12 -узел гидрозащиты (протектор); 13 - по­гружной электродвигатель; 14 - компенсатор

Каждая установка имеет свой шифр, например УЭЦН5А-500-800, в котором приняты следующие обозначения цифра (или цифра и буква) после УЭЦН обозначает наименьший до­пустимый внутренний диаметр обсадной колонны, в которую он может быть спущен, цифра «4» соответствует диаметру 112 мм, цифра «5» соответствует 122 мм, «5А» - 130 мм, «6» - 144 мм и «6А» — 148 мм; второе число шифра обозначает номинальную подачу насоса (в м3/сУт) и третье - примерный напор в м. Зна­чения подачи и напора даны для работы на воде.

В последние годы номенклатура выпускаемых установок центробежных насосов значительно расширилась, что нашло отражение и в шифрах выпускаемого оборудования. Так, уста­новки ЭЦН, выпускаемые фирмой АЛНАС (г. Альметьевск, Татарстан), в шифре имеют заглавную букву «А» после надписи «УЭЦН», а установки Лебедянского механического завода (АО «Лемаз», г. Лебедянь Курской обл.) имеют заглавную букву «Л» перед надписью «УЭЦН». Установки центробежных насосов с двухопорной конструкцией рабочего колеса, предназначенных для отбора пластовой жидкости с большим количеством меха­нических примесей имеют в своем шифре «2» после буквы «Л» и перед надписью УЭЦН (для насосов фирмы «Лемаз»), букву «Д» после надписи «УЭЦН» (для насосов «АО «Борец»), букву «А» перед цифрой габарита установки (для насосов АЛНАС). Коррозионностойкое исполнение УЭЦН отражается буквой «К» в конце шифра установки, термостойкое — буквой «Т». Конструкция рабочего колеса с дополнительными вихревыми лопатками на заднем диске (фирма «Новомет», г. Пермь) имеет в шифре насоса буквенное обозначение ВННП.

6.3. Основные узлы установки ЭЦН, их назна­чение и характеристика

Скважинные центробежные насосы

Скважинные центробежные насосы являются многоступен­чатыми машинами. Это обусловлено в первую очередь малыми значениями напора, создаваемым одной ступенью (рабочим ко­лесом и направляющим аппаратом). В свою очередь небольшие значения напора одной ступени (от 3 до 6-7 м водяного столба) определяются малыми величинами внешнего диаметра рабочего колеса, ограниченного внутренним диаметром обсадной ко­лонны и размерами применяемого скважинного оборудования - кабеля, погружного двигателя и т.д.

Конструкция скважинного центробежного насоса может быть обычной и износостойкой, а также повышенной коррози­онной стойкости. Диаметры и состав узлов насоса в основном одинаковы для всех исполнений насоса.

Скважинный центробежный насос обычного исполнения предназначен для отбора из скважины жидкости с содержанием воды до 99%. Механических примесей в откачиваемой жидко­сти должно быть не более 0,01 массовых % (или 0,1 г/л), при этом твердость механических примесей не должна превышать 5 баллов по Моосу; сероводорода — не более 0,001%. По требова­ниям технических условий заводов-изготовителей, содержание свободного газа на приеме насоса не должно превышать 25%.

Центробежный насос коррозионностойкого исполнения предназначен для работы при содержании в откачиваемой пластовой жидкости сероводорода до 0,125% (до 1,25 г/л). Износостойкое исполнение позволяет откачивать жидкость с содержанием механических примесей до 0,5 г/л.

Ступени размещаются в расточке цилиндрического корпуса каждой секции. В одной секции насоса может размещаться от 39 до 200 ступеней в зависимости от их монтажной высоты. Максимальное количество ступеней в насосах достигает 550 штук.

 

Рис. 6.2. Схема скважинного центробежного насоса:

1 - кольцо с сегментами; 2,3- гладкие шайбы; 4,5- шайбы амортизаторы; 6 - верхняя опора; 7 - нижняя опора; 8 - пру­жинное кольцо опоры вала; 9 - дистанционная втулка; 10 -основание; 11 - шлицевая муфта.

Модульные ЭЦН

Для создания высоконапорных скважинных центробежных насосов в насосе приходится устанавливать множество ступеней (до 550). При этом они не могут разместиться в одном корпусе, поскольку длина такого насоса (15-20 м) затрудняет транспор­тировку, монтаж на скважине и изготовление корпуса.

Высоконапорные насосы составляются из нескольких сек­ций. Длина корпуса в каждой секции не более 6 м. Корпусные детали отдельных секций соединяются фланцами с болтами или шпильками, а валы шлицевыми муфтами. Каждая секция насо­са имеет верхнюю осевую опору вала, вал, радиальные опоры вала, ступени. Приемную сетку имеет только нижняя секция. Ловильную головку — только верхняя секция насоса. Секции высоконапорных насосов могут иметь длину меньшую, чем 6 м (обычно длина корпуса насоса составляет 3,4 и 5 м), в зависи­мости от числа ступеней, которые надо в них разместить.

Насос состоит из входного модуля (рис. 6.4), модуля секции (модулей-секций) (рис. 6.3), модуля головки (рис. 6.3), обрат­ного и спускного клапанов.

 

 

Допускается уменьшить число модулей-секций в насосе, соответственно укомплектовав погружной агрегат двигателем необходимой мощности.

Соединения модулей между собой и входного модуля с двигателем фланцевые. Соединения (кроме соединения входного модуля с двигателем и входного модуля с газосепа­ратором) уплотняют резиновыми кольцами. Соед


Поделиться с друзьями:

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.139 с.