Тема: « Операционный усилитель» — КиберПедия 

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Тема: « Операционный усилитель»

2017-06-13 539
Тема: « Операционный усилитель» 0.00 из 5.00 0 оценок
Заказать работу

РЕФЕРАТ

Тема: «Операционный усилитель»

Выполнила:

студентка 2 курса группа М531

Ахмедханова Д. Г

Принял:

Семиляк Александ Иванович

 

Каспийск 2017

СОДЕРЖАНИЕ ׃

Введение......................................................................................................3

1. Условные графические обозначения операционных усилителей…………………………………………………………………………………………………5

2. Основы функционирования......................................................................7

3. Простейший усилитель на ОУ..................................................................8

4. Отличия реальных ОУ от идеального……………………………………………..……11

5. Основные параметры ОУ …………………………………………………………………….13

6. Применение……………………………………………………………………………………………17

 

Введение

Операционный усилитель – универсальный функциональный элемент, широко используемый в современных схемах формирования и преобразования информационных сигналов различного на значения как в аналоговой, так и в цифровой технике.

Наименование «операционный усилитель» обусловлено тем, что, прежде всего такие усилители получили применение для выполнения операций суммирования сигналов, их дифференцирования, интегрирования, инвертирования и т. д. Операционные усилители были разработаны как усовершенствованные балансные схемы усиления.

Усложнение схем операционных усилителей (современные операционные усилители включают десятки, а иногда и сотни элементарных ячеек: регистров, диодов, транзисторов, конденсаторов), использование генераторов стабильных токов и ряд других усовершенствований существенно расширили сферу возможных применений операционных усилителей.

Операционный усилитель (ОУ) предназначен для выполнения математических операций в аналоговых вычислительных машинах. Первый ламповый ОУ K2W был разработан в 1942 году Л. Джули (США). Первые ОУ на транзисторах появились в продаже в 1959 году. Р. Малтер (США) разработал ОУ Р2, включавший семь германиевых транзисторов и варикапный мостик. Требования к увеличению надежности, улучшению характеристик, снижению стоимости и размеров способствовали развитию интегральных микросхем, которые были разработаны в лаборатории фирмы Texas Instruments (США) в 1958 г. Первый интегральный ОУmА702, имевший рыночный успех, был разработан Р. Уидларом (США) в 1963 году. В настоящее время номенклатура ОУ насчитывает сотни наименований. Эти усилители выпускаются в малогабаритных корпусах и очень дешевы, что способствует их массовому распространению. ОУ представляют собой усилители медленно изменяющихся сигналов с низкими значениями напряжения смещения нуля и входных токов и с высоким коэффициентом усиления. По размерам и цене они практически не отличаются от отдельного транзистора. В то же время, преобразование сигнала схемой на ОУ почти исключительно определяется свойствами цепей обратных связей усилителя и отличается высокой стабильностью и воспроизводимостью. Кроме того, благодаря практически идеальным характеристикам ОУ реализация различных электронных схем на их основе оказывается значительно проще, чем на дискретных элементах. ОУ почти полностью вытеснили отдельные транзисторы в качестве элементов схем ("кирпичиков") во многих областях аналоговой схемотехники.

В 1967 году фирма «National Semiconductor», куда перешёл работать Видлар, выпустила LM101, а в 1968 году фирма Fairchild выпустила ОУ, практически идентичный μA741 — первый ОУ со встроенной частотной коррекцией. ОУ LM101/μA741 был более стабилен и прост в использовании, чем предшественники. Многие производители до сих пор выпускают версии этого классического чипа (их можно узнать по числу «741» в наименовании). Позднее были разработаны ОУ и на другой элементной базе: на полевых транзисторах с p-n переходом (конец 1970-х годов) и с изолированным затвором (начало 1980-х годов), что позволило существенно улучшить ряд характеристик. Многие из более современных ОУ могут быть установлены в схемы, спроектированные для 741 без каких-либо доработок, при этом характеристики схемы только улучшатся.

Применение ОУ в электронике чрезвычайно широко. Операционный усилитель, вероятно, наиболее часто встречающийся элемент в аналоговой схемотехнике. Добавление лишь нескольких внешних компонентов делает из ОУ конкретную схему аналоговой обработки сигналов. Многие стандартные ОУ сто́ят всего несколько центов в крупных партиях (1000 шт), но усилители с нестандартными характеристиками (в интегральном или дискретном исполнении) могут стоить $100 и выше.

 

 

Основы функционирования

Питание

В общем случае ОУ использует двуполярное питание, то есть источник питания имеет три вывода со следующими потенциалами:

· U +, к которому подключается V S+;

· 0 (нулевой потенциал);

· U -, к которому подключается V S-.

Вывод источника питания с нулевым потенциалом непосредственно к ОУ обычно не подключается, но, как правило, является сигнальной землёй и используется для создания обратной связи. Часто вместо двуполярного используется более простое однополярное, а общая точка создаётся искусственно или совмещается с отрицательной шиной питания.

ОУ способны работать в широком диапазоне напряжений источников питания, типичное значение для ОУ общего применения от ±1,5 В[ уточнить ] до ±15 В при двуполярном питании (то есть U + = 1,5…15 В, U - = −15…-1,5 В, допускается значительный перекос).

 

Простейшее включение ОУ

Рассмотрим работу ОУ как отдельного дифференциального усилителя, то есть без включения в рассмотрение каких-либо внешних компонентов. В этом случае ОУ ведёт себя как обычный усилитель с дифференциальным входом, то есть поведение ОУ описывается следующим образом:

здесь

· V out — напряжение на выходе;

· V + — напряжение на неинвертирующем входе;

· V —напряжение на инвертирующем входе;

· G openloop — коэффициент усиления с разомкнутой петлёй обратной связи.

Все напряжения считаются относительно общей точки схемы. Рассматриваемый способ включения ОУ (без обратной связи) практически не используется[2] вследствие присущих ему серьёзных недостатков:

· коэффициент усиления с разомкнутой петлёй обратной связи G openloop нормируется в очень широких пределах и может изменяться в тысячи раз (зависит сильнее всего от частоты сигнала и температуры);

· коэффициент усиления очень велик (типичное значение 106 на постоянном токе) и не поддаётся регулировке;

· точка отсчёта входного и выходного напряжений не поддаются регулировке.

Простейший усилитель на ОУ

Из рассмотрения принципа работы идеального ОУ следует очень простая методика проектирования схем:

Пусть необходимо построить цепь на ОУ с требуемыми свойствами. Требуемые свойства заключаются прежде всего в заданном состоянии выхода (выходное напряжение, выходной ток и т. д.), которое, возможно, зависит от какого-либо входного воздействия. Для создания схемы нужно подключить к ОУ такую обратную связь, чтобы при требуемом выходном состоянии достигалось равенство напряжений на входах ОУ (инвертирующем и неинвертирующем), а обратная связь была бы отрицательной.

Таким образом, требуемое состояние системы будет устойчивым состоянием равновесия, и система будет в нем находиться неограниченно долго. Пользуясь этим упрощённым подходом, несложно получить простейшую схему неинвертирующего усилителя.

Неинвертирующий усилитель

 

 

Расчёт реального коэффициента усиления для идеального (или реального, но который можно с определёнными допущениями считать идеальным) усилителя очень прост. Заметим, что в том случае, когда усилитель находится в состоянии равновесия, напряжения на его входах можно считать одинаковыми.

 

 

Для операционного усилителя, включенного по инвертирующей схеме, расчёт при принятых допущениях тоже не представляет сложности. Для этого следует заметить, что напряжение в средней точке делителя, а именно на инвертирующем входе (−) усилителя равно 0 (так называемая виртуальная земля). Отсюда падения напряжения на резисторах равны, соответственно, входному и выходному напряжениям. Ток через резисторы тоже можно принять одинаковым, поскольку через инвертирующий вход (−) ток практически отсутствует, как было указано выше.

Отсюда:

Следует обратить внимание, что в инвертирующей схеме включения коэффициент усиления может быть как больше, так и меньше единицы и зависит от номиналов резисторов делителя. То есть усилитель может использоваться как активный аттенюатор (ослабитель) входного напряжения. Преимуществом этого решения над пассивным аттенюатором заключается в том, что с точки зрения источника сигнала аттенюатор выглядит как обычный резистор нагрузки, подключенный между сигналом и землёй (в данном случае так называемой «виртуальной»), то есть является обычной активной нагрузкой (разумеется, без учёта паразитных ёмкостей и индуктивностей). Это значительно упрощает расчёт влияния нагрузки на источник сигнала и их взаимное согласование

 

Нелинейные эффекты

  • Насыщение — ограничение диапазона возможных значений выходного напряжения. Обычно выходное напряжение не может выйти за пределы напряжения питания. Насыщение имеет место в случае, когда выходное напряжение «должно быть» больше максимального или меньше минимального выходного напряжения. ОУ не может выйти за пределы, и выступающие части выходного сигнала «срезаются» (то есть ограничиваются).

В моменты насыщения усилитель не действует в соответствии с формулой (1), что вызывает отказ в работе ООС и появлению разности напряжений на его входах, что обычно является признаком неисправности схемы (и это легко обнаруживаемый наладчиком признак проблем). Исключение — работа ОУ в режиме компаратора.

 

 

Основные параметры ОУ

Интегральный ОУ имеет следующие основные параметры:Коэффициент усиления напряжения Kуи - отношение изменения выходного напряжения. В общем случае, коэффициент усиления ОУ, не охваченного обратной связью, равен произведению Kуи всех его каскадов. В настоящее время Kу некоторых усилителей по постоянному току превышает 3*106. Однако его значение уменьшается с ростом частоты входного сигнала, при этом суммарная амплитудно-частотная характеристика (АЧХ) имеет столько изломов, сколько усилительных каскадов в ОУ. Каждый каскад на высоких частотах вносит фазовый сдвиг, который влияет на устойчивую работу ОУ, охваченного отрицательной обратной связью (ООС). Устойчивой работы усилительных каскадов ОУ добиваются введением частотной коррекции - внешних нагрузочных RC-цепей. Для стабилизации двухкаскадного усилителя обычно требуется одна цепь, трехкаскадного - две. Многие ОУ последних выпусков не требуют внешних цепей коррекции, так как в их схему уже введены необходимые элементы.

2. Частота единичного усиления f1 - значение частоты входного сигнала, при котором значение коэффициента усиления напряжения ОУ падает до единицы. Этот параметр определяет максимально реализуемую полосу усиления ОУ. Выходное напряжение на этой частоте ниже, чем для постоянного тока примерно в 30 раз.

3. Максимальное выходное напряжение Uвых.макс - максимальное значение выходного напряжения, при котором искажения не превышают заданного значения. В отечественной практике этот параметр измеряется + Uвых.макс относительно нулевого потенциала как в положительную, так и в отрицательную сторону. В зарубежных каталогах приводят значение максимального диапазона выходных напряжений, который равен 2Uвых. Выходное напряжение измеряется при определенном сопротивлении нагрузки. При уменьшении сопротивления нагрузки величина Uвых.макс уменьшается.

4. Скорость нарастания выходного напряжения VUвых - отношение изменения Uвых от 10 до 90% от своего номинального значения ко времени, за которое произошло это изменение. Параметр характеризует скорость отклика ОУ на ступенчатое изменение сигнала на входе; при измерении ОУ охвачен ООС с общим коэффициентом усиления от 1 до 10.

5. Напряжение смещения Uсм - значение напряжения, которое необходимо подать на вход ОУ, чтобы на выходе напряжение было равно нулю. Операционный усилитель реализуется в виде микросхемы со значительным числом транзисторов, характеристики которых имеют разброс по параметрам, что приводит к появлению постоянного напряжения на выходе в отсутствие сигнала на входе. Параметр Uсм помогает разработчикам рассчитывать схемы устройств, подбирать номиналы компенсационных резисторов.

6. Входные токи Iвх - токи, протекающие через входные контакты ОУ. Эти токи обусловлены базовыми токами входных биполярных транзисторов и токами утечки затворов для ОУ с полевыми транзисторами на входе. Входные токи, проходя через внутреннее сопротивление источника сигнала, создают падения напряжений, которые могут вызвать появление напряжений на выходе в отсутствие сигнала на входе.

7. Разность входных токов. Входные токи могут отличаться друг от друга на 10…20%. Зная разность входных токов, можно легко подобрать номинал балансировочного резистора.

Все параметры ОУ изменяют свое значение - дрейфуют с изменением температуры. Особенно важными дрейфами являются:

8. Дрейф напряжения смещения DUсм

9. Дрейф разности входных токов DIвх.

10. Максимальное входное напряжение Uвх - напряжение, прикладываемое между входными контактами ОУ, превышение которого ведет к выходу параметров за установленные границы или разрушению прибора.

11. Максимальное синфазное входное напряжение Uвх.сф - наибольшее значение напряжения, прикладываемого одновременно к обоим входным выводам ОУ относительно нулевого потенциала, превышение которого нарушает работоспособность прибора. В отечественной документации приводят модуль величины Uвх.сф, а в зарубежной - диапазон.

12. Коэффициент ослабления синфазного сигнала Кос.сф - отношение коэффициента усиления напряжения, приложенного между входами ОУ, к коэффициенту усиления общего для обоих входов напряжения.

13. Выходной ток - максимальное значение выходного тока ОУ, при котором гарантируется работоспособность прибора. Это значение определяет минимальное сопротивление нагрузки. Очень важно при расчете комплексного сопротивления нагрузки учитывать, что при переходных процессах включения (выключения) ОУ значения емкостной или индуктивной составляющей сопротивления нагрузки резко изменяются, и при неправильном подборе нагрузки схема может выйти из строя.

Часто вместо значения Iвых в документации приводят минимальное значение сопротивление нагрузки Rн.мин. Большая часть ОУ, разработанных в последнее время, имеет каскад, ограничивающий величину входного тока при внезапном замыкании выходного контакта на шину источника питания или нулевой потенциал. Предельный выходной ток при этом - ток короткого замыкания Iк.з равен 25 мА.

Конструкторы и технологи микросхем ОУ постоянно ищут способы улучшения основных параметров приборов: увеличения f1,VUвых и др. Применяя схемотехнические решения и вводя новые технологические приемы, стараются снизить значения “паразитных” параметров Uсм, Iвх, DIвх и их дрейфов, а также мощность, потребляемую прибором. Как правило, достичь максимального значения для всех параметров невозможно. Достижение максимального значения одного параметра часто осуществляется за счет ухудшения другого. Так, увеличение коэффициента усиления по напряжению влечет за собой снижение частотных свойств и наоборот.

Как результат поисков и эволюции схемотехнических и технологических решений был создан ряд ОУ, который согласно квалификации по ГОСТ 4465-86 делится на:

универсальные (общего применения), у которых Куu=103…105; f1=1.5…10 Мгц;

прецизионные (инструментальные) с Куu>0.5*106 и гарантированными малыми уровнями Uсм 0.5 мВ и его дрейфа;

быстродействующие со скоростью нарастания выходного напряжения VUвых 20 В/мкс;

регулируемые (микромощные) с током потребления Iпот<1 мА.

В зависимости от условий подачи на вход ОУ усиливаемого сигнала, а также с учетом подключения внешних компонентов можно получить инвертирующее и неинвертирующее включения усилителя. Любое схемотехническое решение с применением ОУ содержит одно из таких включений. На рис. 2а приведена модель инвертирующего включения ОУ. Так как усиление ОУ очень велико, то с небольшой ошибкой будем считать такую модель идеальной, что соответствует выполнению условий Ku®Ґ и Ki®0, где Ku и Ki - коэффициенты усиления по напряжению и току без обратной связи, а также Rвх®Ґ и Rвых®Ґ. В этом случае коэффициент ОУ будет равен:

Знак “-“ в уравнении указывает на инвертирование фазы (полярности) выходного сигнала.

На рис. 2б приведена модель неинвертирующего ОУ. Принимая во внимание модель ОУ идеальной, как и в предыдущем случае Ku®Ґ и Ki®Ґ, Rвх®Ґ и Rвых®0, для данной схемы

В данном случае знак “-“ отсутствует, так как фаза (полярность) выходного сигнала совпадает с фазой входного сигнала.

Входное сопротивление реального инвертирующего усилителя с учетом наличия обратной связи велико:

,

где Rвх.м - собственное входное сопротивление микросхемы;

Ku - коэффициент усиления микросхемы без обратной связи.

Выходное сопротивление реального неинвертирующего усилителя мало

,

где Rвых.м - собственное выходное сопротивление микросхемы

Схемы включения ОУ

Принципиальная схема разрабатываемого усилителя может быть выполнена с использованием дифференциальных микросхем следующих серий: К140, К153, К154, К544, К574 и др. Данные цепей частотной коррекции и цепей баланса взяты из справочной литературы по практическому применению микросхем.

Цепи частотной коррекции предотвращают самовозбуждения усилителя, а цепи баланса при большом коэффициенте усиления позволяют в отсутствии входного сигнала установить на выходе микросхемы напряжение равное нулю.

 

 

РЕФЕРАТ

Тема: «Операционный усилитель»

Выполнила:

студентка 2 курса группа М531

Ахмедханова Д. Г

Принял:

Семиляк Александ Иванович

 

Каспийск 2017

СОДЕРЖАНИЕ ׃

Введение......................................................................................................3

1. Условные графические обозначения операционных усилителей…………………………………………………………………………………………………5

2. Основы функционирования......................................................................7

3. Простейший усилитель на ОУ..................................................................8

4. Отличия реальных ОУ от идеального……………………………………………..……11

5. Основные параметры ОУ …………………………………………………………………….13

6. Применение……………………………………………………………………………………………17

 

Введение

Операционный усилитель – универсальный функциональный элемент, широко используемый в современных схемах формирования и преобразования информационных сигналов различного на значения как в аналоговой, так и в цифровой технике.

Наименование «операционный усилитель» обусловлено тем, что, прежде всего такие усилители получили применение для выполнения операций суммирования сигналов, их дифференцирования, интегрирования, инвертирования и т. д. Операционные усилители были разработаны как усовершенствованные балансные схемы усиления.

Усложнение схем операционных усилителей (современные операционные усилители включают десятки, а иногда и сотни элементарных ячеек: регистров, диодов, транзисторов, конденсаторов), использование генераторов стабильных токов и ряд других усовершенствований существенно расширили сферу возможных применений операционных усилителей.

Операционный усилитель (ОУ) предназначен для выполнения математических операций в аналоговых вычислительных машинах. Первый ламповый ОУ K2W был разработан в 1942 году Л. Джули (США). Первые ОУ на транзисторах появились в продаже в 1959 году. Р. Малтер (США) разработал ОУ Р2, включавший семь германиевых транзисторов и варикапный мостик. Требования к увеличению надежности, улучшению характеристик, снижению стоимости и размеров способствовали развитию интегральных микросхем, которые были разработаны в лаборатории фирмы Texas Instruments (США) в 1958 г. Первый интегральный ОУmА702, имевший рыночный успех, был разработан Р. Уидларом (США) в 1963 году. В настоящее время номенклатура ОУ насчитывает сотни наименований. Эти усилители выпускаются в малогабаритных корпусах и очень дешевы, что способствует их массовому распространению. ОУ представляют собой усилители медленно изменяющихся сигналов с низкими значениями напряжения смещения нуля и входных токов и с высоким коэффициентом усиления. По размерам и цене они практически не отличаются от отдельного транзистора. В то же время, преобразование сигнала схемой на ОУ почти исключительно определяется свойствами цепей обратных связей усилителя и отличается высокой стабильностью и воспроизводимостью. Кроме того, благодаря практически идеальным характеристикам ОУ реализация различных электронных схем на их основе оказывается значительно проще, чем на дискретных элементах. ОУ почти полностью вытеснили отдельные транзисторы в качестве элементов схем ("кирпичиков") во многих областях аналоговой схемотехники.

В 1967 году фирма «National Semiconductor», куда перешёл работать Видлар, выпустила LM101, а в 1968 году фирма Fairchild выпустила ОУ, практически идентичный μA741 — первый ОУ со встроенной частотной коррекцией. ОУ LM101/μA741 был более стабилен и прост в использовании, чем предшественники. Многие производители до сих пор выпускают версии этого классического чипа (их можно узнать по числу «741» в наименовании). Позднее были разработаны ОУ и на другой элементной базе: на полевых транзисторах с p-n переходом (конец 1970-х годов) и с изолированным затвором (начало 1980-х годов), что позволило существенно улучшить ряд характеристик. Многие из более современных ОУ могут быть установлены в схемы, спроектированные для 741 без каких-либо доработок, при этом характеристики схемы только улучшатся.

Применение ОУ в электронике чрезвычайно широко. Операционный усилитель, вероятно, наиболее часто встречающийся элемент в аналоговой схемотехнике. Добавление лишь нескольких внешних компонентов делает из ОУ конкретную схему аналоговой обработки сигналов. Многие стандартные ОУ сто́ят всего несколько центов в крупных партиях (1000 шт), но усилители с нестандартными характеристиками (в интегральном или дискретном исполнении) могут стоить $100 и выше.

 

 


Поделиться с друзьями:

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.057 с.