Графическое представление результатов — КиберПедия 

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Графическое представление результатов

2017-06-13 340
Графическое представление результатов 0.00 из 5.00 0 оценок
Заказать работу

Графическое представление результатов психологического исследования имеет ряд несомненных преимуществ перед табличным (цифровым) материалом в тех случаях, когда речь идет о докладах, научных отчетах и сообщениях, диссертационных работах и т. д. Графическое представление наиболее наглядно, оно позволяет визуально представить полученные закономерности, связи и пр. В данном разделе мы коснемся лишь графического представления распределений исследуемого признака.

В основе графического представления лежат составленные заранее таблицы сгруппированных частот. Первый вид представления – построение столбчатых диаграмм (иначе, гистограмм) распределения признака (рис. 3.1, а). Гистограммы строятся в координатах f = j (x i), где по оси абсцисс откладываются значения признака (x i), а по оси ординат – частота встречаемости признака (f). Ширина каждого столбца гистограммы соответствует ширине класса, а высота столбца – частоте встречаемости признака в данном классе.

Вместо диаграмм можно использовать построение полигона распределения (рис. 3.1, б). В этом случае распределение отображается в виде точек, соединенных друг с другом прямыми линиями. Координаты каждой точки соответствуют среднему значению класса (по оси абсцисс) и частоте встречаемости признака в данном классе (по оси ординат).

 
 


f i

                   
                   
                   
                   
                   
                   
                   
                   
                   
                   

x i

а б

Рис. 3.1. Графическое представление результатов исследования: а – столбчатая диаграмма (гистограмма) распределения (зачерненный столбец соответствует модальному классу); б) полигон распределения. По оси абсцисс – значение исследуемого признака (x i), по оси ординат – частота встречаемости данного значения признака (f)

 

 


раздел 4.
МЕРЫ ЦЕНТРАЛЬНОЙ ТЕНДЕНЦИИ

 

Центральная тенденция – то количественное (численное) значение признака, к которому тяготеет переменная величина. Поскольку понятие «тяготеет» несколько произвольно и с математической точки зрения не вполне корректно, имеет смысл рассмотреть различные меры центральной тенденции более подробно.

В психологических исследованиях в качестве мер центральной тенденции чаще всего используются мода, медиана и среднее арифметическое значение. Значительно реже используются такие меры как среднее геометрическое, среднее гармоническое, обратное среднее гармоническое значение и др.

 

Мода

Мода (Mo) – наиболее часто встречающееся значение признака. В предыдущем примере (ранжированный ряд уровня личностной тревожности) мы имеем две моды: Mo 1 = 36 и Mo 2 = 45 (эти значения переменной встречаются трижды, в то время как все остальные – по 1 или 2 раза). В зависимости от того, сколько значений признака удовлетворяют определению моды, различают мономодальные (имеющие одну моду), бимодальные (имеющие две моды) и полимодальные распределения(имеют более чем две моды), а также распределения, не имеющие моды (все значения признака встречаются примерно с одинаковой частотой). В бимодальном и полимодальном распределениях, в свою очередь, можно определить наибольшую и наименьшую моды.

В тех случаях, когда анализируются таблицы сгруппированных частот исследуемого признака, как правило, определяется модальный класс, т. е. тот класс распределения, в который попадает наибольшее количество частот (значений признака). Так, для иллюстрации зачерненный столбец на рис. 3.1, а соответствует модальному классу.

Мода не является достаточно строгой мерой центральной тенденции, поскольку она не учитывает характера распределения переменных, а значит может использоваться лишь в предварительных выводах и прогнозах. Кроме того, необходимо использовать моду только для больших объемов выборок, поскольку для малых она недостаточно информативна.

 

Медиана

Медиана (Md) – значение, которое делит упорядоченное множество данных (ранжированный ряд) пополам так, что одна половина значений оказывается больше, а другая – меньше медианы. Медиана – среднее значение ранжированного ряда. Если число значений нечетное, то медиана соответствует среднему члену ряда, если четное, то медиана есть среднее между двумя центральными значениями (в предыдущем примере Md = 41,5).

Медиана соответствует 50-му процентилю, 5-му децилю или 2-му квартилю в группе данных, т. е. Md = P 50 = D 5 = Q 2.

Мода и медиана не учитывают разброса данных, и переменные, лежащие в стороне от центра, не влияют на их величину.

 


Поделиться с друзьями:

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.01 с.