Трахея и бронхи, их местоположение, функция. Строение стенки. — КиберПедия 

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Трахея и бронхи, их местоположение, функция. Строение стенки.

2017-06-12 738
Трахея и бронхи, их местоположение, функция. Строение стенки. 0.00 из 5.00 0 оценок
Заказать работу

Функция

Функция трахеи и бронхов заключается не только в обеспечении правильного газообмена в легких, а носит многосторонний характер. К примеру, гибкая трубка в нашем организме работает как резонатор, так как воздух проходит и через голосовые связки. Таким образом, трахея принимает участие в формировании голоса. Что касается непосредственно бронхов, то они способны разрушать и обезвреживать некоторые токсические вещества, которые губительны для нашего организма.

1. Дренажная

2. Защитная

3. Голосовая

Легкие, их местоположение, основные части, поверхности, доли, ворота. Строение ацинуса. Особенности кровообращения легких. Механизм газообмена.

Основные части, поверхности, доли

Ворота

Строение ацинуса

Особенности кровообращения легких.

Анатомические особенности. Кровоснабжение легких осуществляется легочными и брон­хиальными сосудами. Легочные сосуды составляют малый круг кровообращения и выполняют главным образом функцию газообмена между кровью и воздухом. Бронхиальные сосуды обеспе­чивают питание легкого и принадлежат к большому кругу кровообращения.

Капилляры легких образуют на поверхности альвеол очень густую сеть и при этом на одну альвеолу приходится несколько капилляров; питание стенки альвеол происходит через капилляр­ную сеть легочных сосудов.

Венозная бронхиальная сеть дренирует кровь как в систему большого круга кровообраще­ния (верхняя непарная вена, правое предсердие), так и малого - в легочные вены. 70% крови, по­ступающей в бронхиальные артерии направляется через капиллярные и венозные анастомозы в легочные вены. В результате этого примесь бронхиальной венозной крови понижает на 6-10 мм рт.ст. напряжение О2 в артериализированной крови (это приводит к артериальной гипоксемии при усилении бронхиального кровотока при митральном стенозе и др. заболеваниях).

Механизм газообмена.

В легких происходит газообмен между поступающим в альвеолы воздухом и протекающей по капиллярам кровью. Интенсивному газообмену между воздухом альвеол и кровью способствует малая толщина так называемого аэрогематического барьера. Он образован стенками альвеолы и кровеносного капилляра. Толщина барьера – около 2,5 мкм. Стенки альвеол построены из однослойного плоского эпителия, покрытого изнутри тонкой пленкой фосфолипида – сурфактантом, который препятствует сли- панию альвеол при выдохе и понижает поверхностное натяжение.

Альвеолы оплетены густой сетью кровеносных капилляров, что сильно увеличивает площадь, на которой совершается газообмен между воздухом и кровью.

При вдохе концентрация (парциальное давление) кислорода в альвеолах намного выше (100 мм рт. ст.), чем в венозной крови (40 мм рт. ст.)протекающей по легочным капиллярам. Поэтому кислород легко выходит

из альвеол в кровь, где он быстро вступает в соединение с гемоглобином эритроцитов. Одновременно углекислый газ, концентрация которого в венозной крови капилляров высокая (47 мм рт. ст.), диффундирует в альвеолы, где его парциальное давление ниже (40 мм рт. ст.). Из альвеол легкого углекислый газ выводится с выдыхаемым воздухом.

Таким образом, разница в давлении (напряжение) кислорода и углекислого газа в альвеолярном воздухе, в артериальной и венозной крови дает возможность кислороду диффундировать из альвеол в кровь, а угле-кислому газу из крови в альвеолы.

Благодаря особому свойству гемоглобина вступать в соединение с кислородом и углекислым газом кровь способна поглощать эти газы в значительном количестве. В 1000 мл артериальной крови содержится до

20 мл кислорода и до 52 мл углекислого газа. Одна молекула гемоглобина способна присоединить к себе 4 молекулы кислорода, образуя неустойчивое соединение – оксигемоглобин.


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.007 с.