Цитоплазматическая наследственность — КиберПедия 

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Цитоплазматическая наследственность

2017-06-12 583
Цитоплазматическая наследственность 0.00 из 5.00 0 оценок
Заказать работу

Движущие силы эволюции

Число факторов эволюции может быть очень большим, так как в природе имеется масса событий, способных влиять на генофонд популяций. Ч. Дарвин отнес к основным движущим силам (факторам) эволюции наследственность, наследственную изменчивость и естественный отбор. Он также придавал большое значение ограничению свободного скрещивания вследствие изоляции популяций друг от друга. В современной биологии к основным факторам эволюции относят еще миграцию особей, дрейф генов и др.

Наследственность

Наследственность — это свойство живых организмов передавать свои признаки потомкам в поколениях. Этим обеспечивается преемственность и связь в популяциях между разными поколениями. Наследственность является одним из главных факторов эволюции. Благодаря наследственности в популяциях сохраняются и закрепляются ценные адаптации, обеспечивающие выживание, размножение и индивидуальность (дискретность) видов в природе. Материалом, обеспечивающим наследственность организмов, является ДНК, образующая конкретный генотип организма и генофонд популяции и вида в целом.

Следует иметь в виду, что в процессе эволюции наследуются не конкретные признаки, а в целом генотипы, являющиеся носителями этих и других признаков. Основными носителями генов в клетке и организме эукариот являются хромосомы, состоящие из ДНК и белков. Хромосомы находятся в ядре, имеющем гаплоидный или диплоидный (реже полиплоидный) набор хромосом (см. хромосомную теорию наследственности). У прокариот (бактерий) наследственный аппарат устроен значительно проще. Он представлен нуклеоидом — одной сложной кольцевидной молекулой ДНК, не соединенной с гистонами и не отделенной ядерными мембранами от цитоплазмы.

С наследственным аппаратом организмов связан ряд терминов, которые широко используются в литературе по генетике и эволюционной биологии.

Совокупность всех генов данного организма или данной клетки, включая все многообразие аллелей, характер их сцепления и наследования, образует генотип организма. Понятие генотипа было введено в научную литературу в 1909 г. В. Иогансеном. Им же предложено определение фенотипа.

Фенотипом называется совокупность всех признаков организма, формирующихся в конкретных условиях под контролем генотипа, — размеров, формы, окраски, образования тех или иных веществ и т. п. Фенотип является внешним проявлением генотипа.

Совокупность всех генотипов, присутствующих в популяции или в группе популяций, составляющих вид, носит название генофонда. Понятие генофонда было введено в 1928 г. крупным отечественным генетиком А. С. Серебровским.

Геномом называется совокупность всех генов у гаплоидных организмов или у гаплоидных стадий организмов. Представления о геноме были сформулированы в 1920 г. Г. Винклером. В отличие от генотипа, геном представляет характеристику популяции или вида, а не особи.

Результатом проявления (экспрессии) генов, входящих в генофонд, является множество разных фенотипов, составляющих норму реакции популяции.

Цитоплазматическая наследственность

Некоторые признаки могут наследоваться без участия ядерного аппарата. Это касается так называемой цитоплазматической наследственности. Последняя связана с тем, что некоторые клеточные структуры (митохондрии, пластиды) имеют свою автономную кольцеобразную ДНК и способны делиться сравнительно автономно от клетки. Поэтому некоторые признаки, связанные с этими структурами (окраска плодов, цветков и листьев, высокая активность клеточного дыхания и ряд др.) могут передаваться дочерним поколениям, но только по материнской линии или при вегетативном размножении (так как спермии не несут пластид и последние передаются с клетками материнского организма).

Наследственная изменчивость

Вторым решающим фактором эволюции является изменчивость организмов, то есть способность новых поколений приобретать признаки, отсутствовавшие у родительских форм, и/или существовать в неодинаковых формах или вариантах. Именно изменчивость позволяет организмам быстро и эффективно приспосабливаться к меняющимся условиям среды обитания.

Изменчивость может быть двух типов: 1) наследственная (генотипическая) и 2) модификационная (под влиянием внешней среды).

Модификационная, или фенотипическая, изменчивость не затрагивает наследственный аппарат. Она возникает как реакция генотипа на действие окружающей среды и проявляется в пределах нормы реакции. Нормой реакции называется весь спектр (или все пределы изменения) фенотипических признаков, которые возможны у данного генотипа или генофонда. То есть это способность генотипа (генофонда) формировать определенные фенотипы в конкретных условиях обитания.

Вспомним несколько примеров модификационной изменчивости из школьных учебников. Из генетически однородных семян одного и того же растения в разных условиях вырастут очень различающиеся по фенотипам растения в зависимости от условий обитания — освещения, почвы, северной экспозиции рельефа, влажности и т. п. На одном и том же дереве листья очень сильно различаются по размерам, хотя имеют один генотип. Еще большие различия проявляются в пределах видов или многочисленных популяций, где вариации фенотипов будут еще более разнообразными, так как являются выражением большого числа разных генотипов, составляющих генофонд этого вида или популяции.

Но модификационная изменчивость не передается по наследству и поэтому не влияет на ход и темпы эволюционных процессов.

Для эволюции большое значение имеет наследственная изменчивость, позволяющая закреплять новые приобретенные признаки в последующих поколениях.

Наследственная изменчивость практически всегда (кроме явлений цитоплазматической и плазмидной наследственности) связана с перестройками генетического материала в особях и в популяциях в целом. Поэтому в основном она связана с разными формами генотипической изменчивости.

Генотипическая изменчивость

Этот тип изменчивости затрагивает генотип организмов и осуществляется с помощью мутаций (мутационная изменчивость) или возникает при половом размножении (комбинативная изменчивость).

Мутации могут быть нескольких типов, и они по-разному проявляются в эволюции. Возникают мутации под влиянием мутагенов — химических веществ или излучений, воздействующих на геном. Иногда они могут возникать при влиянии экстремальных температур или каких-то иных факторов среды. В истории Земли повышенный мутагенез неоднократно возникал при повышении радиационных фонов при интенсивной вулканической деятельности, при насыщении атмосферы, вод и почвы выбросами и газами вулканов, при разломах земной коры, при интенсивных процессах горообразования и т. п.

Геномные мутации

Этот тип мутаций затрагивает разом весь геном организма. Связан он с изменением числа хромосом, которое может происходить несколькими путями. Структура гомологичных хромосом при этом не меняется.

Полиплоидия

Полиплоидией называют увеличение числа хромосом, кратное их гаплоидному набору (в 3-10, иногда в 100 раз). Такие организмы называют по числу хромосом в вегетативной клетке триплоидными (3n), тетраплоидными (4n), пентаплоидными (5n), гексаплоидными (6n) и т. п. Полиплоидия возникает в результате нарушения расхождения хромосом в процессе митоза или мейоза под влиянием различных внешних факторов — высоких или низких температур, ряда химических веществ и т. п. Наиболее часто этот тип мутаций происходит у растений. Встречается он также у некоторых простейших, дождевых червей и некоторых других групп животных (но значительно реже, чем у растений). Полиплоидия может возникать как в вегетативных клетках (отклонение от диплоидного набора числа хромосом), так и в гаметах (отклонение от гаплоидного числа хромосом). Она может происходить у представителей одного вида (автополиплоидия) и при межвидовых скрещиваниях (аллополиплоидия). Первый тип наиболее часто происходит у видов с вегетативным размножением, а второй — у размножающихся половым путем. Полиплоидия имеет огромное значение в эволюции живого мира. Предполагают, что более четверти видов сосудистых растений возникли именно этим способом. Полиплоиды часто имеют более крупные размеры, более активные процессы обмена веществ и повышенную устойчивость к неблагоприятным факторам среды. Поэтому полиплоиды широко используются в практике селекции растений. Однако во многих случаях, особенно при нечетном габоре числа хромосом (триплоидном — 3n, пентаплоидном — 5n), полиплоиды отличаются низкой плодовитостью, что существенно снижает их конкурентную способность в природе и селекционную ценность.

Хромосомные мутации

Этот тип мутаций вызывает перестройку самих хромосом, не изменяя их количество. Способы изменения структуры хромосом под влиянием мутагенов или по иным каким-то причинам очень разнообразны. Назовем некоторые из них:

а) дупликация — удвоение какого-то участка хромосомы;

б) делеция — потеря какого-то участка хромосомы;

в) инверсия — поворот участка хромосомы на 180 градусов;

г) перенесение участка хромосомы на другую, не гомологичную ей;

д) центрическое слияние — слияние участков негомологичных хромосом.

Причиной хромосомных мутаций является отклонение от нормы процессов митоза и мейоза, приводящее к разрыву хромосом и их воссоединению в новых сочетаниях. Хромосомные мутации могут изменить функционирование отдельных генов или их комбинаций и являются важным фактором эволюции.

Трансформация и трансдукция

У прокариот и низших эукариот кроме названных выше возможны также и другие способы генотипической изменчивости. К их числу относятся трансформация и трансдукция.

Трансформацией называется перенос генетического материала от одной клетки к другой или его поступление из внешней среды в виде участков ДНК (чаще всего это плазмиды, кольцевидные участки ДНК, несущие информацию о каком-то процессе или признаке; например, устойчивость бактерий и грибов к антибиотикам и ядохимикатам часто носит плазмидный характер, на плазмидах в этом случае находятся гены, кодирующие ферменты, разлагающие названные вещества).

Трансдукцией называется изменение генетического материала с помощью умеренных вирусов (не разрушающих клетку), генетический материал которых встраивается в геном хозяина. При этом у хозяина могут возникнуть новые признаки. Например, у бактерий в этом случае может возникнуть способность к паразитизму или образованию токсических веществ. У высших растений под действием вирусов нередко приобретается пестрая окраска (вспомните, например, тюльпаны с пестрыми цветками). Под действием вирусов могут возникать и отрицательные перестройки — появление некоторых злокачественных опухолей у человека и животных.

Комбинативная изменчивость

Комбинативная изменчивость всегда связана с половым размножением. Она составляет часть генотипической изменчивости, так как ее результатом также является частичная перестройка хромосом, возникающая при кроссинговере в процессе мейоза. Таким образом, гаметы получают не идентичные хромосомы, как это происходит при митозе. Вторым механизмом повышения генетического разнообразия в гаметах является независимое расхождение хромосом, создающих при половом размножении новые комбинации генотипов. Именно поэтому половое размножение является очень крупным эволюционным приобретением организмов, обеспечивающим быстрое изменение признаков и передачу их дочерним поколениям. Это значительно облегчает приспособление организмов к разным условиям окружающей среды. В комбинации с мутагенезом комбинативная изменчивость заметно ускоряет эволюционные процессы.

Миграции

Еще одним важным фактором эволюции, вызывающим изменение генетического равновесия в составе популяций, являются миграции. Они активно меняют соотношение частот аллелей и генотипов в составе генофонда популяции. Чем выше интенсивность миграций и чем больше разница в частотах встречаемости аллельных генов, тем большее влияние они оказывают на генетическое равновесие в популяциях.

Эволюционное значение миграций состоит в том, что они выполняют две важнейшие функции в природе: 1) способствуют объединению видов как целостных систем, обеспечивая регулярные или периодические контакты между отдельными его популяциями; 2) способствуют проникновению видов в новые места обитания (в этом случае может возникнуть обособленность дальних популяций от основного вида).

Значительную роль в расширении миграций сыграл человек, обеспечивший продвижение многих видов растений и животных в новые регионы (особенно это касается окультуренных растений и одомашненных животных). Например, по всей планете распространились зерновые культуры, картофель, многие плодовые деревья и кустарники, куры, утки, гуси, индейки, крупный рогатый скот, лошади и другие.

Популяционные волны

В природных условиях постоянно происходят периодические колебания численности популяций многих организмов. Их называют популяционными волнами, или волнами жизни. Этот термин был предложен С. С. Четвериковым.

Численность популяций претерпевает значительные изменения, связанные с сезонным характером развития многих видов и условиями их обитания. Она также может сильно изменяться в разные годы. Известны случаи массового размножения популяций отдельных видов, например у леммингов, саранчи, болезнетворных бактерий и грибов (эпидемии) и т. п.

Нередки случаи резкого, иногда катастрофического сокращения численности популяций, связанные с нашествием болезней, вредителей, природными явлениями (лесные и степные пожары, наводнения, извержения вулканов, длительные засухи и т. п.).

Известны примеры резкой вспышки численности некоторых видов, представители которых попали в новые для них условия, где у них нет врагов (например, колорадский жук и элодея канадская в Европе, кролики в Австралии и др.).

Процессы эти носят случайный характер, приводя к гибели одни генотипы и стимулируя развитие других, вследствие чего могут происходить существенные перестройки генофонда популяции. В малочисленных популяциях потомство даст небольшое число случайно выживших особей, поэтому в них значительно повышается частота близкородственных скрещиваний, что увеличивает вероятность перехода отдельных мутаций и рецессивных аллельных генов в гомозиготное состояние. Таким образом, мутации могут реально проявиться в популяциях и послужить началом образования новых форм или даже новых видов. Редкие генотипы могут или окончательно исчезнуть, или вдруг размножиться в популяциях, став доминирующими. Доминирующие генотипы могут либо сохраниться в новых условиях, либо резко сократиться по численности и даже полностью исчезнуть из популяций. Явления перестройки структуры генофонда и изменения в нем частот встречаемости разных аллельных генов, связанные с резким и случайным изменением численности популяций, получили название дрейфа генов.

Таким образом, популяционные волны и связанные с ним явления дрейфа генов приводят к отклонениям от генетического равновесия в популяциях. Эти изменения могут быть подхвачены отбором и способны повлиять на дальнейшие процессы эволюционных преобразований.

Изоляция

Изоляция также является важным фактором эволюции, вызывая сокращение или полное прекращение скрещиваний между родственными популяциями. Таким образом, в составе вида или популяции могут возникнуть две или большее число групп, различающихся друг от друга генетически, и эти различия будут постепенно накапливаться вследствие увеличения числа родственных скрещиваний. В дальнейшем на их основе могут образоваться новые подвиды

Существуют две формы изоляции — пространственная и биологическая.

Пространственная изоляция

Она возникает при появлении различных труднопреодолимых барьеров — дрейфа материков, наличия рек, проливов, хребтов, ледников и т. п. В настоящее время пространственная изоляция популяций значительно возросла за счет деятельности человека — появления крупных городов, дорог, искусственных каналов, плотин и иных сооружений, ограничивших свободное передвижение популяций многих животных. Пространственная изоляция возросла также вследствие активной вырубки лесов, создания обширных окультуренных территорий и агроценозов, истребления популяций вследствие охоты и т. п. Все это вместе взятое существенно уменьшает возможности свободного скрещивания между разными популяциями и часто способствует разрыву одной популяции на ряд изолированных групп.

Биологическая изоляция

Этот тип изоляции возникает при потере возможностей свободного скрещивания вследствие ряда биологических причин.

а) Экологическая изоляция возникает в результате действия биотических или абиотических факторов на популяции, обитающие на одной территории. Приспособление к разным температурам приводит к появлению весенних, летних и осенних видов растений, грибов и животных, активных именно в эти периоды и поэтому не скрещивающихся друг с другом. Выпадение восприимчивых хозяев вынуждает паразитов и симбионтов приспосабливаться к новым видам растений или животных.

б) Морфологическая изоляция возникает при мутациях, вызывающих изменение формы цветков и исключающих опыление ветром или определенными группами насекомых. У паразитов растений возникают мутации, позволяющие им развиваться на корнях, листьях, стеблях, цветках или плодах растений (морфологическая специализация). У животных в результате мутаций могут изменяться размеры и формы копулятивного аппарата, изолирующие их от других особей.

в) Поведенческие изоляции возникают у животных при изменении ритуала ухаживания за самкой или ведения брачных поединков, ограничивающего их спаривание с представителями других популяций.

г) Генетическая изоляция появляется при перестройках генотипов — изменении числа или формы хромосом у близких видов, что уменьшает возможности образования полноценного потомства между ними.

Движущие силы эволюции.

Эволюция материи в первую очередь - это развитие энергоинформационных систем, способных воспринимать внешние воздействия, адекватно реагировать на них, т.е. вести интенсивный энергоинформационный обмен и передавать накопленную и переработанную информацию следующим поколениям.

Движущие силы эволюции были изложены еще Чарльзом Дарвином - это наследственность, изменчивость и естественный отбор. Наследственность или генотип особи представляет набор генетических программ возможного развития. Этот набор программ всегда избыточен, в том смысле, что реализуются только некоторые из них, под действием отбора, который в свою очередь является совокупным, формирующим воздействием внешнего энергоинформационного поля. Поле создает пространство для развития более плотной по отношению к нему энергоинформационной конфигурации живого организма, при этом только малая часть признаков развивающегося организма закреплена наследственно и жестко детерминирована, остальные формируются непосредственно под воздействием внешнего поля. Совокупность наследственных программ и приобретенных, определяют адекватность новой энергоинформационной структуры по отношению к внешнему полю, которая определяет эволюционный успех особи и передачу информации. Информация может передаваться как генетический материал от родителей к детям, так и через единое энергоинформационное поле, а у высших форм добавляется передача жизненного опыта, воспитание.

Ненаследственная изменчивость проявляется в том, что ряд родительских признаков не наследуется, эти признаки были сформированы только под влиянием внешних воздействий, и уже не актуальны для нового поколения. Другие признаки, наоборот, наследуются и усиливаются у потомков, эти признаки либо жестко закреплены генотипом, либо формируются под влиянием и внешней, и наследственной информации (мультифакторные признаки). Направленные изменения позволяют говорить об отборе, происходящем в этом направлении.

Мутации, появление нового генетического материала, который может быть востребован отбором, появляются под воздействием внешнего поля на генетический материал, причем иногда активизируются архивированные генные программы. При этом уровень архивированного генетического материала на порядки выше задействованного в ходе жизнедеятельности. Такие мутации - это реагирование организма в пределах уже имеющейся генетической информации, и проявляются при незначительных изменениях внешней среды. Появление принципиально новых прогрессивных эволюционных признаков происходит при энергоинформационных воздействиях на молекулы ДНК, записи новой информации. Таким образом, первично внешнее энергоинформационное воздействие по отношению к системе, произвольные реакции системы возможны только в рамках уже имеющейся генетической информации.

Появление и закрепление прогрессивных признаков может идти не только на уровне наследственной передачи, т. е. на уровне ДНК, но через энергоинформационные взаимодействия и передачу информации на полевом уровне. Так в рамках энергоинформационной концепции находят примирение давние споры эволюционистов. В частности подмеченное одним из первых теоретиков эволюции Ж.Б.Ламарком направленное развитие определенного признака, которое проявляется только под влиянием внешних факторов, передается по наследству, но на генетическом уровне не закрепляется. Эти закономерности были отмечены и на практике селекционерами. Но механизм закрепления и передачи этих признаков до конца не был ясен, поскольку в организме нет информационной передачи от признака к генам, от белка к ДНК. Есть только обратный механизм, поэтому единственное объяснение, данное генетиками этому явлению - случайные мутации генетического материала. Иными словами, развитие есть череда случайных перестроек ДНК, да еще, выстроенных в направлении отбора признака. Мало кто принял это объяснение, тем более практики - селекционеры, которые знают скорость передачи и усиление признака из поколения в поколение, характерное для большей части селекционного материала. Действительно, не может же одна и та же случайная мутация проявляться у большей части особей.

Единственное объяснение этого явления - введение в систему еще одного информационного фактора, энергоинформационного поля. В принципе его присутствие никто не отвергал, называя это воздействие просто факторами внешней среды, не конкретизируя и не объясняя их действие. А действие их направленное и информативное, первичное по отношению к любому материальному проявлению. Все изменения, происходящие с живой системой, обусловлены энергоинформационными воздействиями, ДНК используется внешним полем для записи изменений, и дальнейшей наследственной передачи. Этот долгий путь передачи используется только для части информации с целью получить информационную комбинацию при скрещивании, своего рода работа поля на перспективу. Быстрый путь передачи для большинства признаков - через энергоинформационное поле, здесь отрабатываются незначительные изменения, накапливаются из поколения в поколение и наиболее значимые из них записываются на ДНК.

В энергоинформационных системах существует естественное ограничение разнообразия, число форм, существующих в природе гораздо меньше всех возможных вариантов. Это правило свойственно всем уровням материи, и подводит нас, как и Чарльза Дарвина, к понятию отбора, жестко ограничивающего разнообразие жизненных программ. Подобный отбор проявляется не только в процессе развития при интенсивной реализации генетического материала, но и в течение всей жизни, на всех уровнях энергоинформационного обмена системы со средой, включая уровень поведенческих реакций. Отбор нужной энергоинформационной программы в среде идет не только в течение жизни, но и после смерти, когда отбирается уже свободная энергоинформация по степени интенсивности передающей ее энергии. Эта интенсивность передающей энергии определяется общим уровнем энергетики организма, тем уровнем свободной оперативной энергии, на котором организм решает свои жизненные задачи.

Таким образом, определяются два решающих параметра для отбора выигрышной системы - информация и энергия, а точнее их совокупность. Информация является внешним фактором, а энергия - внутренним системным. Степень развития этих факторов системы проявляется в уровне энергоинформационного обмена со средой. Организм должен в ходе жизни не только усвоить перспективную информацию, но и достичь высокого уровня энергии для ее передачи как при жизни в ходе размножения, так и после смерти в виде свободной энергоинформационной программы.

Внешний отбор всегда есть прогресс характера энергоинформационных отношений системы со средой, хотя прогрессивные признаки могут казаться невыгодными в сложившихся условиях. Здесь мы подходим к факторам неповиновения системы внешнему отбору, внутреннему системному отбору, механизм которого заключается в борьбе за существование, конкуренции за ресурс. Это стабилизирующий отбор, приносящий в энергоинформационное поле массовую фоновую информацию. Действительно, конкурирующие за определенный ресурс индивидуумы развивают приспособления для его добычи, при этом характер этих изменений становится необратимым. Система выходит из под контроля внешнего поля, не адекватна внешним воздействиям. Прогресс в такой системе не возможен, поэтому происходит элиминация, катастрофическое уничтожение носителей фоновой информации при резкой смене условий существования. Энергоинформационное поле переходит на новый эволюционный уровень, механизм энергоинформационного обмена стабилизируется, что приводит к стабилизации условий существования. Начинается новый этап развития. В ходе развития энергоинформационное поле Земли не раз подвергалось подобным потрясениям для перехода на более высокий уровень информационного обмена со средой (см. рис № 5).


Рисунок № 5. Действие катастрофы на сообщество с доминированием внутрисистемного развития.

 


Направления эволюции.

Неживая материя, так же является энергоинформационной, но уровень ее информационного обмена со средой на порядки ниже. В отличие от живых организмов, неживые системы не предугадывают будущие события и не реагируют адекватно. Так, например, лужа под лучами солнца не пытается никуда спрятаться, а просто высыхает, хотя информация о ней и передается следующей луже в виде высохших солей и цист микроорганизмов, уровень этого энергоинформационного обмена низкий. Таким образом, главным направлением эволюции является развитие систем упреждения событий - сенсорных, обрабатывающих информацию и дающих адекватный ответ, какой является нервная система. Развитие этих систем позволяет повысить уровень энергоинформационного обмена со средой, что является основной жизненной характеристикой.

Действительно, общий план строения, внешний вид, функциональная организация систем органов, процессы в клетке не приобретают столь значимых изменений у разных эволюционных групп, как развитие нервной системы, сенсорных систем, организация передачи наследственной информации и жизненного опыта. При этом одним из наиболее важных признаков прогрессивной группы является повышение общего уровня энергетики.

Пример такого эволюционного консерватизма по отношению к второстепенным признакам можно наблюдать при конвергентном сходстве разных групп в одинаковых условиях. Например, акула, вымерший ихтиозавр и дельфин развивались в одинаковых условиях, и хотя относятся к разным таксономическим группам, их внешнее сходство очень велико. Их отличают ключевые эволюционные признаки, которые и обеспечили преемственность этих групп и развитие энергоинформационного поля Мирового океана.

Что позволило выжить акулам в конкуренции с более прогрессивными морскими млекопитающими? То же что дает прогресс дельфинам: развитие экстрасенсорных способностей восприятия, высокая степень сохранности потомства (живородящие акулы) и отчасти стабильность океанической среды. Адекватность внешним воздействиям позволила такой древней группе занять место в современных экосистемах.

Развитие экстрасенсорных способностей человека и животных является вершиной эволюции, позволяет живому организму выйти на принципиально новые уровни взаимодействия со средой, что является логичным направлением развития общего информационного поля. Эти способности действительно потрясают воображение, и мы к ним еще вернемся.

 


Происхождение жизни.

Происхождение жизни вопрос загадочный и всегда вызывал много споров. Жизнь произошла на Земле или другой сходной по условиям планете под влиянием внешних энергоинформационных воздействий. Уровень организации самого сложного конгломерата молекул и простейшей, живой клетки настолько разный, что самозарождение жизни кажется совершенно невероятным. Однако наиболее вероятной теорией на сегодняшний день остается случайное зарождение жизни при совокупном воздействии внешних факторов. Причем, вероятность спонтанного достижения уровня организации простейшей клетки предельно низкая. Один из исследователей сравнил эту вероятность с тем, что ветер над свалкой сможет собрать новенький Боинг.

Формированию прокариотической клетки предшествовал синтез и последующий отбор биомолекул - полимеров сложной конфигурации. Такой отбор, проходящий на молекулярном уровне организации живого присутствует и сейчас, когда количество природных молекул составляет 1 млн., искусственно синтезированных - 10 млн., а количество теоретически возможных молекул еще выше на порядки. Далее прокариоты формировались по единому принципу развития - защита информации, то есть формированию белковой структуры вокруг информационных молекул, нуклеиновых кислот. Подобный уровень организации живого - существует и сейчас, это вирусы.

Вирусы - представляют собой конгломерат белков и нуклеиновых кислот, не имеют собственного механизма биосинтеза, то есть считывания информации и синтеза белков, для этого они используют имеющиеся механизмы в живых клетках. Только такой способ существования позволил им пройти такой длительный эволюционный путь. Однако их существование доказывает возможность жизни и развития даже таких простейших структур. Вероятно, свободное существование таких примитивных энергоинформационных конгломератов возможно только в хаотической среде насыщенной готовыми белковыми молекулами разного строения. Среди этого разнообразия структура отбирала наиболее подходящие для себя аминокислотные последовательности, но это возможно только под действием внешних энергоинформационных воздействий, задающих в пространстве шаблон возможного развития. Параллельно с отбором материала для будущей клетки формируются механизмы наследственной передачи информации, биосинтеза белка, завершается процесс разделения информационных и энергетических функций молекул. Структура стремится к целостности, к равновесию со средой на новом уровне.

Процесс формирования, специализации и отбора сложнейших молекулярных взаимодействий в клетке настолько сложен, что мог идти только при непосредственном внешнем энергоинформационном воздействии. То есть информация о строении материи всегда первична по отношению к самой материи и является надматерией. Само появление такого энергоинформационного воздействия в первичном поле Земли - тайна, которую нам еще предстоит разгадать.

На низком уровне развития любая система более стабилизирована энергетически, более устойчива, нежели высокоорганизованная, которые более лабильны и изменчивы. Поэтому для формирования таких систем требуется более высокая энергетика среды, ее энтропия, высокая хаотичность. Это достигается мощным внешним воздействием целого ряда факторов. В результате сформированная система обладает высоким уровнем связанной энергии и огромным скрытым потенциалом, но информативность этой системы очень низкая. Для прихода такой системы к стабилизации требуется гораздо больше взаимодействий, а, следовательно, времени.

В дальнейшем развитие происходит при меньшей степени энергообмена со средой, но при большем уровне обмена информации. Уровень энтропии и хаоса у сложных систем снижается, они быстро и адекватно реагируют даже на незначительные воздействия, опережают их, скорость развития существенно ускоряется.

Любая система стремится к повышению уровня информационных взаимодействий и самосознанию. При этом целью развития и усложнения системы является принцип сохранения энергии. Действительно, простые системы способны существовать только в условиях высокой внешней энергетики. При понижении уровня внешней энергии, система вынуждена вырабатывать механизмы сохранения энергии и, следовательно, усложняется.

Зарождение жизни было возможно только в условиях хаоса и высокой энтропии, которые появились при постепенном остывании Земной коры.

Следует отметить, временные рамки этого процесса. Для подбора нужных белковых молекул из первичного бульона даже в условиях низких требований к специфичности молекул, требовалось долгое время. Высокая энтропия первичной среды позволяла ускорить эти процессы, но все равно процесс формирования полноценных одноклеточных организмов занял, по разным оценкам, не менее 1 миллиарда лет. В дальнейшем темпы эволюционного развития существенно ускорялись, т.к. скорость реагирования живой материи на внешние развивающие сигналы и есть направление эволюции.

 


Поиск источников энергии.

Высокий уровень энергии в первичном бульоне постепенно снижался, и доля органического вещества также уменьшалась. Поэтому для примитивных одноклеточных организмов возникла необходимость поиска энергии для существования. Живая материя, появление ее в процессе эволюции планеты - это способ сохранить энергию на поверхности остывающей планеты путем усложнения структуры и повышения уровня информации в системе.

Часть прокариот осталась гетеротрофными, они включились в круговорот веществ, до сих пор выполняя важнейшие функции разложения органических остатков. Эти бактерии могут длительное время находиться в состоянии покоя, ожидая внешние, благоприятные условия.

Но для развития информационной жизни на планете требовался путь первичного накопления энергии, компенсация потери энергии в ходе остывания планеты. Появился принципиально новый тип энергетического взаимоотношения со средой - автотрофность. Это фотосинтетические организмы, использующие энергию Солнца и хемоавтотрофы, использующие энергию Земли.

Таким образом, отличием живой материи является привлечение независимого энергетического источника, ресурсы которого практически безграничны. Появление и эволюция живой материи - это реакция системы на естественное понижение энергетического уровня планеты. Но цель этих процессов эволюция информационного поля. Обратите внимание, насколько тесно переплетены энергетические и информационные процессы в системе, какая тесная эволюционная связь между живой и неживой материей.

Одноклеточные организмы развили сложнейшие механизмы фотосинтеза, своеобразные молекулярные реакционные устройства для перевода фотонного импульса в энергию химических связей. Эти приспособления дали толчок к накоплению органического вещества и образованию кислородной атмосферы. Однако на Земле имеются источники жизни, не связанные с энергией Солнца. Энергетический источник этой жизни - энергия Земли, выделяемая в виде молекулярных веществ, в частности сероводорода. Источники такой жизни находятся глуб


Поделиться с друзьями:

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.077 с.